
Unified Grounding

Casper Storm Hansen

Abstract: This paper offers a unification and systematization
of the grounding approaches to truth, denotation, classes and
abstraction. Its main innovation is a method for “kleenifying”
bivalent semantics so as to ensure that the trivalent semantics
used for various linguistic elements are perfectly analogous to
the semantics used by Kripke, rather than relying on intuition
to achieve similarity. The focus is on generalizing strong Kleene
semantics, but one section is devoted to supervaluation, and the
unification method also extends to weak Kleene semantics.

Kripke (1975) formulated a theory of truth and proposed a solution to the
Liar Paradox and the other paradoxes that have to do with truth and non-
wellfoundedness. In doing so, he made use of Kleene’s (1952, §64) trivalent
semantics for the connectives and their generalization to the quantifiers.
The approach of Kripke and Kleene can be generalized by adding other
syntactic elements to the formal language and interpreting them, like the
truth predicate, with a partial evaluation that grows monotonically in a
recursive “process”, eventually yielding a fixed point. This has been done for
denotation and the paradoxes thereof by Kremer (1990), Kroon (1991), and
myself (Hansen 2012); for classes and Russell’s Paradox by Maddy (1983,
2000); and for abstracta, by Horsten and Linnebo (2015) and other scholars
cited in that paper.

This paper offers a unification of those four theories of grounding. The
above-cited authors who take inspiration from Kripke all proceed by simply
stipulating some trivalent semantics and claiming that the semantics for the
additional linguistic resources, and the solutions to the paradoxes, are anal-
ogous to Kleene’s and Kripke’s. Instead of just stipulating some semantics
that seems to accord with Kleene’s, this paper systematizes by enforcing
similarity in a canonical way: providing a precise definition of what it is to
“kleenify” a given piece of classical semantics, and then extracting all the
trivalent semantics needed to handle the paradoxes from “kleenifications” of
bivalent semantics, thus ensuring that the solutions are uniform.

I will treat denotation in detail, as it has not yet – despite three attempts
– been handled in a manner that is both fully satisfactory (in the sense of
being made completely analogous to Kripke’s theory1) and comprehensive
(i.e. able to deal with all of the paradoxes of denotation). In contrast,

1Kroon’s semantic clauses (1991, 28–32) are inconsistent; see in particular clauses (7)
and (8). What seems to me to be the most natural way to regain consistency is to change
“∈” in (2) to “/∈” and require that d1, . . . , dn ∈ D ∪ {?} in (8). In that case, predicates,
including an x-refers-to-y predicate, have semantics that are analogous to weak Kleene,

1



Maddy and Horsten and Linnebo have formulated theories that are perfectly
similar to Kripke’s, and therefore there is less work left for this paper to
do when it comes to classes and abstraction. However, they achieve this
similarity merely by relying on intuitions about what semantics is analogous
to Kripke’s. Enforcing similarity in a systematic way is what is added here.

This paper is structured as follows. Section 1 is concerned with reformulating
Kripke’s theory in such a way that it (a) is recovered through kleenification
and (b) is, in a certain sense, modular and thereby open to piecewise ex-
tension with linguistic resources beyond the truth predicate. Section 2 pro-
vides a theorem about fixed points and consistency that is general enough
to cover both the theory presented in section 1 and the extensions that fol-
low. Then, in section 3, the linguistic resources needed to formulate most of
the paradoxes of denotation are added. One paradox of denotation is best
formalized using classes and is therefore postponed to section 4, which is
concerned with abstraction, and class abstraction in particular. Finally, in
section 5, after having focused on strong Kleene for most of the paper, it
is explained how the concept of kleenification extends to the supervaluation
versions of Kripke’s theory.

1 Kripke’s theory reformulated

We define an object language, L , that is similar to natural language in all
aspects relevant to the paradoxes. One aspect of natural language relevant to
Berry’s Paradox is that not all natural numbers are describable with just one
syllable; so in L , not all natural numbers should be denoted by a constant.
Similar points apply to König’s Paradox and Richard’s Paradox. On the
other hand, having a constant for each object in the domain makes it possible
to treat quantification substitutionally, which turns out to be significantly
simpler than making use of assignments and the notion of satisfaction. We
therefore also define an extended language, L +, that has that useful feature.
The sets of constants for the two languages are denoted “C” and “C+”,
respectively, and C ⊂ C+. This is the only difference between the languages,
so all other stipulations apply to both of them.

Let us first stipulate that for each n ∈ N there is a set Pn of ordinary
n-ary predicates, supplemented with a unary, extraordinary predicate, T ,
the truth predicate. Reflecting the fact that there are only finitely many
primitive proper names and predicates in natural language, C and

⋃
n∈N Pn

are assumed to be finite. We also have a countable set of variables. The
syntaxes of L and of L + are specified through definitions of term and

while the definite-description operator follows the connectives and quantifiers in being
weak, strong or in-between.
Kremer (1990) is consistent but also relies on stipulations. Further, he stipulates a se-
mantics for the definite-description operator which is a kleenification (see below for a
definition) of a function that itself has “undefined” in its co-domain, leaving it unclear
how that function would fit into a classical language.
In (Hansen 2012) I too just made stipulations, and my semantics for ordinary predicates
was not a kleenification of anything, as I failed to take account of the possibility that a
predicate may be indifferent about one or more of its terms, given the other terms.

2



wff (and later class term) as the smallest sets that satisfy the S-clauses to
follow. These seven clauses give us what is needed for this section; more will
be added later.

(Sc) Every constant is a term.

(Sx) Every variable is a term.

(S∧) If φ and ψ are wff’s, then φ ∧ ψ is a wff.

(S¬) If φ is a wff, then ¬φ is a wff.

(S∀) If φ is a wff and x is a variable, then ∀xφ is a wff.

(SP ) If P is an ordinary n-ary predicate and t1, . . . , tn are terms, then
P (t1, . . . , tn) is a wff.

(ST ) If t is a term, then T (t) is a wff.

Disjunction, the conditional, and the existential quantifier are defined in the
usual way. When φ is a wff, x a variable, and c a constant, φ(x/c) is the wff
that is identical to φ, with the (possible) exception that all free occurrences
of x are replaced with c. A wff is a sentence, and a term is closed, if it
does not contain any free variables. So far, a term’s lack of free variables
is equivalent to its not containing any variables at all, but that will change.
Let S and T be the set of sentences and the set of closed terms, respectively,
of L , and likewise for S+ and T +. As S ⊂ S+ and T ⊂ T +, specifying the
semantics for L + also gives us the semantics for L .

In our meta-language, the symbols >, ⊥ and ? will be used for truth, false-
hood, and undefinedness, respectively. For any set A, A? will denote A∪{?}.
When it is not explicitly stated that a given set contains ?, it does not.

A model is a pair M = (D, I). D, the domain, is a set that includes as
subsets ω1 (for the purpose of Berry’s and König’s paradoxes), R (for the
purpose of Richard’s Paradox), and S+ ∪ T + ∪ {>,⊥} (for reasons to be
explained in connection with the definition of “evaluation”, below). The
interpretation function, I, satisfies the conditions given in the I-clauses to
follow. Here is the first:

(Ic) The restriction of I to C+ is a bijection from C+ to D.

The surjectivity of the restriction of I to C+ is what allows us to treat
quantification substitutionally. Nothing substantial hangs on the further
stipulation of injectivity, but it streamlines the presentation, because (among
other reasons) it allows us to use, for each d ∈ D, the symbol “cd” for the
constant such that I(cd) = d. We let I interpret everything classically, hence
this clause governing ordinary predicates:

3



(IP ) For every P ∈ Pn, I(P ) is a function from Dn to {>,⊥}.

An evaluation is defined as a function from D? to itself. The purpose of an
evaluation is to assign truth values to sentences, and denotations to closed
terms. Being a function from D? to itself, it can do the former because the
sentences are included in the domain of the function, and the truth values
in the co-domain; and it can do the latter because the closed terms are also
included in the domain, and every object they can potentially denote in
the co-domain. We let the function’s domain be all of D? instead of just
S+ ∪ T + because of cases such as a sentence of the form T (r(t)). Here,
r is the reference function, to be formally introduced below, that maps an
object to what it denotes. (The object to be mapped is the denotation of
t, so r(t) returns the denotation of the denotation of t, not the denotation
of t.) Further, t is some complex term, formed by syntactic rules also not
yet introduced, that is not given a denotation directly in the ground model,
but which may or may not get one at some point in the recursion. If it
ends up referring to something non-linguistic that does not itself have a
reference, for example the Moon, then the semantics of T (r(t)) must still
be well-defined. As this semantics is determined by what r(t) refers to, the
reference of r(t) must be well-defined in all cases – or at least, ensuring
that it is in a formal sense is the most elegant way of handling this kind of
complication. Ergo, we let the Moon formally denote something, a dummy
object. Falsehood, ⊥, is reused in this role.2 Similarly, while t is undefined,
the value of undefined also needs formally to denote something, namely
itself. In general, we want “everything” to denote “something”, and that is
why we settle on this definition of “evaluation”.

The E-clauses that follow specify (relative to the model), recursively, a func-
tion, J , called the jump that maps an evaluation E− to another evaluation
E . The clauses covering the base cases of the recursive definition are listed
here, with the rest following further down:

(Ec) E(c) = I(c) for all c ∈ C+

(Ed) E(d) = ⊥ for every element d of D \ (S+ ∪ T +)

(E?) E(?) = ?

For the remaining E-clauses we shall require the kleenified functions men-
tioned in the introduction, so it is time to define the concept of kleenification,
along with a few associated concepts.

Definition 1. For any indexed family of sets (Aj)j∈J and any element a =
(aj)j∈J of

∏
j∈J A

?
j , an element ā = (āj)j∈J of

∏
j∈J A

?
j is a precisification

if, for all j ∈ J , if aj 6= ? then aj = āj ; and it is a total precisification if,
additionally, āj ∈ Aj for all j ∈ J .3

2Cf. Kremer (1990, 40), this means that the intuitive meaning of “there exists
something that t refers to” is not captured by ∃x(r(t) = x), but must be formalized
∃x(r(t) = x ∧ x 6= c⊥). Cf. Kroon (1991, 29), “⊥” can in this context be read as “deter-
minately non-denoting”, while “?” means “undefined”.

3We will not distinguish between the indexed family
∏

{1,...,n}A and the Cartesian
product An.

4



Kleene (1952, 334) defines a truth table as “regular” if “A given column
(row) contains [>] in the [?] row (column), only if the column (row) consists
entirely of [>]’s; and likewise for [⊥].” This is the natural generalization:

Definition 2. A function kf : A? → B?, where A? is a subset of
∏
j∈J A

?
j ,
4

is regular if, for all elements a = (aj)j∈J of A?, kf(a) = b 6= ? implies that
for all precisifications ā of a it is the case that kf(ā) = b.

What are now known as the “strong Kleene” (“weak Kleene”) truth tables
are the strongest (weakest) regular extensions of the classical truth tables
in the sense that the function value is true or false (undefined) whenever
possible. Thus, what is asserted below about regular functions applies to
strong Kleene, weak Kleene and “everything in between”.

The next definition is the central one, generalizing the procedure for obtain-
ing the strong Kleene truth tables for the connectives from their classical
counterparts.

Definition 3. For any given function f : A → B or f : A → B?,5 where A is
a subset of

∏
j∈J Aj , the (strongly6) kleenified-f or the (strong) kleenification

of f is defined to be the function kf : A? → B?, such that (1) A? is the
set of those elements in

∏
j∈J A

?
j that have at least one precisification in A

and (2) for all elements a = (aj)j∈J of A?, if there is a b ∈ B such that for
all total precisifications ā of a it is the case that f(ā) = b, then kf(a) = b;
otherwise kf(a) = ?.7

Obviously, any kleenified function is regular.

We immediately apply this. Instead of stipulating the trivalent semantics
for conjunction directly, we only stipulate that the classical truth-function
for it is f∧ : {>,⊥}2 → {>,⊥} defined by f∧(>,>) = > and f∧(>,⊥) =
f∧(⊥,>) = f∧(⊥,⊥) = ⊥. We then apply the definition and obtain this
semantic clause:

(KF∧) The kleenified conjunction-truth-function is kf∧ : {>,⊥, ?}2 →
{>,⊥, ?} given by

4In almost all applications we will make of this and the following definition, A? just
is

∏
j∈J A

?
j . The only examples where A? is a proper subset of

∏
j∈J A

?
j will come in the

final paragraph of this paper.
5The latter option will only become relevant in connection with footnote 10.
6Similarly, the weakly kleenified-f can be defined as the function wkf : A? → B?

such that for all elements a = (aj)j∈J of A?, wkf(a) = f(a), if a ∈ A and wkf(a) = ?
otherwise. However, we will not make use of this notion, so the word “strongly” will be
suppressed in the following pages.

7Definitions 1–3 can alternatively be made in terms of information orderings. Let A?

be ordered such that a ≤ a′ iff a = ? or a = a′. Further, let
∏
j∈J A

?
j be ordered such

that (aj)j∈J ≤ (a′j)j∈J iff aj ≤ a′j for all j ∈ J . In that case (a′j)j∈J is a precisification of
(aj)j∈J . If, further, (a′j)j∈J is maximal, it is a total precisification of (aj)j∈J . A function
is regular iff it is a homomorphism. Let the functions A? → B?, where A? is a subset
of

∏
j∈J A

?
j , be ordered such that kf ≤ kf ′ iff kf(a) ≤ kf ′(a) for all a ∈ A?. Given a

function f : A → B, the strongly kleenified-f is the maximum among the regular functions
of type A? → B?, for which it holds that the restriction of that function to A is identical
to f . I leave the proof of equivalence to the reader.

5



• kf∧(>,>) = >,

• kf∧(>,⊥) = kf∧(⊥,>) = kf∧(⊥,⊥) = kf∧(⊥, ?) = kf∧(?,⊥) =
⊥, and

• kf∧(>, ?) = kf∧(?,>) = kf∧(?, ?) = ?.

Note that, unlike the S-, I-, and E-clauses, this and all the following KF-
clauses are not definitions but theorems. (However, in all cases the proofs
are so trivial that they will be omitted.)

Next, we substitute the kleenified function for the classical function to obtain
the E-clause. The recursive clause for the classical evaluation of a conjunc-
tion is E (φ∧ψ) = f∧(E (φ),E (ψ)). Accordingly, the recursive clause for the
Kripke-evaluation of a conjunction is (using implicit universal quantification
over all sentences or terms of the given form from now on)

(E∧) E(φ ∧ ψ) = kf∧(E(φ), E(ψ))

We need to do the same for negation, the quantifier, the ordinary predicates,
and the truth predicate. I will skip the first of these as it is trivial.

The (classical) universal-quantifier-truth-function is f∀ :
∏
D{>,⊥} → {>,⊥}

defined by f∀((vd)d∈D) = > if vd = > for all d ∈ D and f∀((vd)d∈D) = ⊥ if
vd = ⊥ for some d ∈ D, which is applied thus: E (∀xφ) = f∀((E (φ(x/cd)))d∈D).

(KF∀) The kleenified universal-quantifier-truth-function is kf∀ :
∏
D{>,⊥, ?} →

{>,⊥, ?} given, for all (vd)d∈D ∈
∏
D{>,⊥, ?}, by

• kf∀((vd)d∈D) = > if vd = > for all d ∈ D,

• kf∀((vd)d∈D) = ⊥ if vd = ⊥ for some d ∈ D, and

• kf∀((vd)d∈D) = ? if vd ∈ {>, ?} for all d ∈ D and vd = ? for some
d ∈ D.

(E∀) E(∀xφ) = kf∀((E(φ(x/cd)))d∈D)

The (classical) truth-function for an arbitrary predicate P is I(P ) : Dn →
{>,⊥}, which is applied thus: E (P (t1, . . . , tn)) = I(P )(E (t1), . . . ,E (tn)).

(KFP ) The kleenified-I(P ) is the function kI(P ) : (D?)n → {>,⊥, ?}
given, for all (d1, . . . , dn) ∈ (D?)n, by

• kI(P )(d1, . . . , dn) = > if every total precisification (d̄1, . . . , d̄n)
of (d1, . . . , dn) is such that I(P )(d̄1, . . . , d̄n) = >,

• kI(P )(d1, . . . , dn) = ⊥ if every total precisification (d̄1, . . . , d̄n)
of (d1, . . . , dn) is such that I(P )(d̄1, . . . , d̄n) = ⊥, and

• kI(P )(d1, . . . , dn) = ? otherwise.

(EP ) E(P (t1, . . . , tn)) = kI(P )(E(t1), . . . , E(tn)).

6



The (classical) truth-predicate-truth-function is fT : D → {>,⊥} defined
by fT (>) = > and fT (d) = ⊥ for all d ∈ D \ {>}.

(KFT ) The kleenified truth-predicate-truth-function is kfT : D? → {>,⊥, ?}
given by

• kfT (>) = >,

• kfT (d) = ⊥ for all d ∈ D \ {>}, and

• kfT (?) = ?.

The recursive clause for the classical (Tarskian) evaluation of a truth sen-
tence is E (T (t)) = fT (E−(E (t))). For Tarski, E (t) cannot be a sentence in
the same language, but must be a sentence in a lower-level language (if it is
a sentence at all); and E− is then the evaluation function for that language.
The recursive clause for the Kripke-evaluation of a truth sentence is

(ET ) E(T (t)) = kfT (E−(E(t))).

Here E(t) is a sentence in the same language and E− is the evaluation at the
previous level.

To complete the reconstruction of Kripke’s theory, we just need to define
the hierarchy.

Definition 4. For every ordinal α we define the evaluation with respect to
the model M and the level α, Eα, by recursion: E0 is the “empty evaluation”,
i.e. the constant function mapping every element of D? to ?. When α is a
successor ordinal, Eα = J (Eα−1). When α is a limit ordinal, Eα is the
“union” of all Eη for η < α, in the sense that for all d1 ∈ D? and d2 ∈ D,
Eα(d1) = d2 iff there exists an η < α such that Eη(d1) = d2, and Eα(d1) = ?
iff there is no such d2.

8

As we will prove, the hierarchy ends in a fixed point, and we use the notation
JφK for the value of φ in that fixed point. It also remains to be proved that
this definition is legitimate, i.e. that there cannot be two different d2, d

′
2 ∈ D

such that both Eα(d1) = d2 and Eα(d1) = d′2 should be the case according
to the definition.

As mentioned in the introduction, the two languages are ”modular”: they
can be extended with extra linguistic resources by adding an S-clause, an
E-clause and a classical function to be kleenified plus, if presupposed by
that function, an I-clause. As a result, the denotations of “L ” and “L +”
as well as “sentence”, “term”, “Eα”, etc. are relative to which modules are
added. We could be more formally precise and avoid this relativity, but
there is no need: the general points that will be made about the languages
are independent of which addition modules are included.

8With reference to footnote 7, Eα, for α a limit ordinal, can simply be defined as the
least upper bound of {Eη|η < α}.

7



2 Abstract fixed point theorem

We prove that the recursion is well-defined and ends in a consistent fixed
point using a theorem that applies both to the interpreted language as it
is specified so far, and to the extensions thereof as they are developed in
sections 3 and 4. In the interest of generality, the theorem not only covers
the case of the initial evaluation being empty, but any case where it is
“sound”. One more definition is needed: given a strictly partially ordered
set (A,<), let A<a be {a′ ∈ A|a′ < a}.

Theorem 1. Let the following be given: (1) a well-founded, strictly partially
ordered set (D?, <), (2) for each d ∈ D?, a regular function ed :

∏
D? D

? ×∏
D<d D

? → D? , and 3) a function E0 : D? → D?. Define, by recursion on
<, the function E1 : D? → D? by E1(d0) = ed0((E0(d))d∈D? , (E1(d))d∈D<d0 ).
Assume that for each d0 ∈ D?, if E0(d0) 6= ? then E1(d0) = E0(d0). Then
there is, for each ordinal α > 1, a unique function Eα : D? → D? such that
for all d0 ∈ D?

• for successor α: Eα(d0) = ed0((Eα−1(d))d∈D? , (Eα(d))d∈D<d0 )

• for limit α: Eα(d0) = Eβ(d0) for all β < α for which Eβ(d0) 6= ?, and
if there is no such β then Eα(d0) = ?

Furthermore, there is an α such that for all β > α and for all d ∈ D?,
Eβ(d) = Eα(d).

Because this theorem is quite abstract, we need to account for how it applies.
We do that before proving it. The theorem allows an element of the domain
to be evaluated only by a function of the type

∏
D? D

?×
∏
D<d D

? → D?, but
none of the E-clauses do that. However, there is a canonical way to transform
the functions referred to by the E-clauses (namely those in the KF-clauses)
into functions of that type. First, we need to define the ordering <. Let it be
the smallest transitive relation on D? that satisfies the following: φ < φ∧ψ,
ψ < φ ∧ ψ, φ < ¬φ, φ(x/c) < ∀xφ, t1 < P (t1, . . . , tn), . . . , tn < P (t1, . . . , tn)
and t < T (t). As the relevant linguistic resources are introduced later in
this paper, it must also satisfy these conditions: t < r(t) (subsection 3.1),
φ(x/c) < �x(φ) (subsection 3.2), ct < ct = ct′ and ct′ < ct = ct′ (section 4),
φ(x/t) < t ∈ x̂φ (subsection 4.1) and φ(x/c) < cf(x̂φ) (subsection 4.2).

With that ordering in place, we can make the transformations. Let us take
conjunction and the truth predicate as examples. To evaluate a conjunction,
φ∧ψ, we have a function kf∧ that takes the values of φ and ψ as input, i.e.,
has {>,⊥, ?}2 as its domain. We can extend the domain to (D?)2 by stipu-
lating that the function value is ⊥ if one or both of the arguments is not in
{>,⊥, ?}. Thus we have a regular function kf ′∧ : (D?)2 → D?, which we can
further transform into a function eφ∧ψ :

∏
D? D

? ×
∏
D<d D

? → D? by “ig-
noring” most of the arguments: for all E− ∈

∏
D? D

? and E|D<d ∈
∏
D<d D

?,
eφ∧ψ(E−, E|D<d) = kf ′∧(E|D<d(φ), E|D<d(ψ)). This is again a regular func-
tion.

The evaluation of a sentence of the form T (t) can also be put in the form
of a function of the type eT (t) :

∏
D? D

? ×
∏
D<d D

? → D?. Once again, let

8



E− ∈
∏
D? D

? and E|D<d ∈
∏
D<d D

?. The closed term t is in the domain
and is smaller than T (t) by the ordering <. Hence, E|D<d(t) is well-defined
and is an element of D?, and therefore E−(E|D<d(t)) is well-defined. So
define eT (t)(E−, E|D<d) = > if E−(E|D<d(t)) = >, eT (t)(E−, E|D<d) = ? if
E−(E|D<d(t)) = ?, and eT (t)(E−, E|D<d) = ⊥ if E−(E|D<d(t)) /∈ {>, ?}. This
is obviously equivalent with the rule for evaluation of T (t) as specified by
KFT and ET . And from these two examples for conjunction and the truth
predicate, it should be clear how the rules for evaluation for the rest of the
expressions of our language can be cast in the form of the theorem. The
theorem is proved as follows:

Proof. The proof of the unique existence of the Eαs is by outer induction
on α and inner induction on d0 ∈ D? as ordered by <. The induction
proposition is a conjunction. The first conjunct is that there is a unique
value of Eα(d0) that satisfies the conditions. The second conjunct is that
there is an ordinal γ ≤ α and a b ∈ D? such that for all δ < γ, Eδ(d0) = ?,
and for all δ such that γ ≤ δ ≤ α, Eδ(d0) = b. The base case is trivial.

For the successor case, the first conjunct follows from the fact that at the
given point in the recursion, the right-hand side of the equation in the sec-
ond bullet point is well-defined. With regard to the second conjunct, we
can distinguish two sub-cases, namely (1) that Eδ(d0) = ? for all δ < α, and
(2) that there is an ordinal γ ≤ α − 1 and a b ∈ D (note: not “b ∈ D?”)
such that for all δ < γ, Eδ(d0) = ?, and for all δ such that γ ≤ δ ≤ α,
Eδ(d0) = b. In the first sub-case, any value of Eα(d0) will make the conjunct
true. In the second sub-case, assume first that γ is a successor ordinal, so
that Eγ(d0) = ed0((Eγ−1(d))d∈D? , (Eγ(d))d∈D<d0 ). Then the set of precisifi-
cations of ((Eα−1(d))d∈D? , (Eα(d))d∈D<d0 ) is, by the induction hypothesis, a
subset of the set of precisifications of ((Eγ−1(d))d∈D? , (Eγ(d))d∈D<d0 ). Ergo,
as ed0 is a regular function, ed0((Eα−1(d))d∈D? , (Eα(d))d∈D<d0 ) is equal to
ed0((Eγ−1(d))d∈D? , (Eγ(d))d∈D<d0 ); so the second conjunct is true. If γ is
instead equal to 0, then run the same argument but with 1 in place of γ. It
is obvious that γ cannot be a limit ordinal different from 0.

The limit case follows directly from the induction hypothesis.

As D is set-sized, the existence of an α such that for all β > α and for all
d ∈ D?, Eβ(d) = Eα(d) follows by the usual cardinality argument.

3 Denotation

We will now extend the language and apply it to treat the paradoxes.

3.1 Reference

The key to treating the paradoxes of denotation in the same way as the
paradoxes of truth is to have a reference function in the language that
works in a way that is similar to the truth predicate. The truth-predicate-
truth-function is the identity function except for those values that it is not

9



“supposed” to be applied to, i.e. non-truth-values. It is only because it
is syntactically possible to apply the truth predicate to a term that refers
to something that is not a sentence that the full function is not the iden-
tity function. The reference function works exactly like the truth predicate
except for the exception:

(Sr) If t is a term, then r(t) is a term.

The (classical) reference function is the identity function fr : D → D, which
is applied thus: E (r(t)) = fr(E−(E (t))).

(KFr) The kleenified reference function is the identity function kfr : D? →
D?.9

(Er) E(r(t)) = kfr(E−(E(t))).

Here is an example: Let t0 be a constant that denotes the definite descrip-
tion (to be introduced into our formal language in the next subsection) “the
smallest perfect number”. Then kfr(E−(E(t0))) = kfr(E−(“the smallest perfect number”)) =
kfr(6) = 6.

The Tarskian reason for using E− instead of a second application of E is that
the paradoxes of reference show that a classical and self-referential language
cannot contain its own reference function, just as the Liar and the other
paradoxes of truth show that it cannot contain its own truth predicate.
The Kripkean reason for using E− is that E(t) may be of higher syntactic
complexity than r(t); so for the recursion to be well-defined, we have to look
back a level.

3.2 Definite descriptions

(S�) If φ is a wff and x is a variable, then �x(φ) is a term.

The (classical) definite-description-function is f� :
∏
D{>,⊥} → D defined,

for all (vd)d∈D ∈
∏
D{>,⊥}, by f�((vd)d∈D) = d0 if vd0 = > and vd = ⊥ for

all d 6= d0, and f�((vd)d∈D) = ⊥10 if vd = ⊥ for all d or vd = > for more
than one d, which is applied thus: E (�x(φ)) = f�((E (φ(x/cd)))d∈D).

(KF�) The kleenified definite-description-function is kf� :
∏
D{>,⊥, ?} →

D? given, for all (vd)d∈D ∈
∏
D{>,⊥, ?}, by

• kf�((vd)d∈D) = d0 if vd0 = > and vd = ⊥ for all d 6= d0,

9This is because D contains more than one element. Had it contained only one, the
kleenified function would map ? to that element.

10Recall footnote 2: as a semantic value of a term, ⊥ means “determinately non-
denoting”.
We could have followed Frege here and used ? instead of ⊥ so that a sentence such as “the
largest prime is odd” would come out undefined. Note that that option is already covered
by Definition 3, as it allows the function to be kleenified to have ? in the co-domain.

10



• kf�((vd)d∈D) = ⊥ if vd = ⊥ for all d or vd = > for more than one
d, and

• kf�((vd)d∈D) = ? otherwise.

(E�) E(�x(φ)) = kf�((E(φ(x/cd)))d∈D).

3.3 Berry’s Paradox

With the reference function and the definite-description operator in place, it
becomes possible to formalize the description responsible for Berry’s Para-
dox.

Berry’s Paradox: The definite description

Berry’s description: the least integer not describable in fewer than
twenty syllables

is a description of nineteen syllables. So the least integer not describable in
fewer than twenty syllables is describable in only nineteen syllables.11

Formalization: Let n, m, and x be variables, S and N be unary predicates,
and ≡ and ≥ be binary predicates (written in-fix), such that I(S) is the set
of “short” closed terms of L , i.e. those that contain 67 primitive symbols or
fewer; I(N) is the set of natural numbers; I(≥) is the relation “larger than
or equal to” on the set of natural numbers (⊥ whenever one of the relata
is not a natural number); and I(≡) is the identity relation (reserving the
symbol “=” for later).

We can formalize “The natural number n is not denoted by a short closed
term” thus:

N(n) ∧ ∀x(r(x) ≡ n→ ¬S(x))

Therefore, “n is the least natural number that is not denoted by a short
closed term” can be formalized

(N(n) ∧ ∀x(r(x) ≡ n→ ¬S(x))) ∧
∀m(N(m) ∧ ∀x(r(x) ≡ m→ ¬S(x))→ m ≥ n).

Ergo, Berry’s description in a version that substitutes length of formal ex-
pressions for number of syllables, “the least natural number that is not
denoted by a short closed term”, can be formalized as (B):

�n((N(n) ∧ ∀x(r(x) ≡ n→ ¬S(x))) ∧
∀m(N(m) ∧ ∀x(r(x) ≡ m→ ¬S(x))→ m ≥ n)) (B)

(B) contains no constants and is therefore a closed term of L with 67 prim-
itive symbols.

Proof of undefinedness: That J(B)K = ? is proved by induction on the
levels. The base and limit cases are trivial. For the successor case, assume
that Eα−1((B)) = ?. From this it follows that

Eα(r(c(B))) = kfr(Eα−1(Eα(c(B)))) = kfr(Eα−1((B))) = kfr(?) = ?.

11Russell 1908.

11



Given that Eα(¬S(c(B))) = ⊥, it can then be inferred that for all c ∈ C+,
Eα(r(c(B)) ≡ c→ ¬S(c(B))) = ?, and thus that

Eα((N(n) ∧ ∀x(r(x) ≡ n→ ¬S(x))) ∧
∀m(N(m) ∧ ∀x(r(x) ≡ m→ ¬S(x))→ m ≥ n)) 6= >.

Ergo, neither the first bullet point nor the second disjunct of the second
bullet point of KF� is satisfied. We need to show that the first disjunct of
the second bullet point also is not, because then the third bullet point is.

Closed terms that can be obtained from each other through the renaming of
variables are obviously given the same value at each level, so consider them
identical. Then there are only finitely many closed terms consisting of at
most 67 primitive symbols in L . Let n be a natural number that is not
denoted by one of these at level α− 1, and let n̄ be a constant for n in L +.
It follows that Eα(N(n̄)) = > and that Eα(∀x(r(x) ≡ n̄ → ¬S(x))) 6= ⊥.
Because of the rule for conjunction, we have now reduced the problem to
showing that

Eα(∀m(N(m) ∧ ∀x(r(x) ≡ m→ ¬S(x))→ m ≥ n)) 6= ⊥.

However, that follows from the already established undefinedness of r(c(B)) ≡ c→
¬S(c(B)) for all c ∈ C+. So it can be concluded that Eα((B)) = ?.

3.4 Other paradoxes

Having dealt with Berry’s Paradox in detail, I believe I can safely leave a
number of other paradoxes of denotation as exercises for the reader: König’s
Paradox12, Hilbert and Bernays’ Paradox13, Uzquiano’s Paradox14 and Sim-
mons’ Paradox15. (Formalizing Hilbert and Bernays’ Paradox and Sim-
mons’ Paradox requires the addition of function symbols to the language
and kleenification of their semantics.) Richard’s Paradox is treated at the
end of the following section.

4 Abstraction

In order to formulate the definite description responsible for the last of
the paradoxes of reference, Richard’s, we must have class functions. We
therefore postpone this paradox until we have treated the more fundamental
aspects of classes. Classes are formed by abstraction and will be our primary
example of abstracta.

To extend our language with some form of abstraction, we need an operator
§ that transforms a linguistic item a of a specified sort into an abstraction

12König 1905.
13Originally presented in (Bernays and Hilbert 1939, 263–278); natural language formu-

lation in (Priest 2006).
14Uzquiano 2004.
15Simmons 2005.

12



term §a, along with a truth function that results in an equivalence relation
indicating which pairs of abstraction terms §a and §b make the sentence
§a = §b true. As long as this truth function takes as its inputs only the
semantic values of the sentences and terms, the function can be kleenified.
For instance, if the domain contains lines and there is a binary predicate P
meaning “are parallel”, then the abstraction operator d for “the direction
of” can be introduced, together with a truth function to determine the
truth value of d(a) = d(b) – which is simply the identity function applied
to the evaluation of the sentence P (a, b), and the latter can of course be
kleenified. Likewise, numbers could be introduced using Hume’s Principle:
the abstraction operator is #, which takes a wff with one free variable to a
number term; and the truth function is one that serves to make #φ(x) =
#ψ(y) true iff there is a bijection between the true sentences of the form
φ(x/cd) and the true sentences of the form ψ(y/cd), and such a truth function
is also kleenifiable. We will not formally introduce either of these things into
our language, as our focus is on paradoxes and generalizing Kripke’s solution.
We therefore only formally introduce classes:

(S )̂ If φ is a wff and x is a variable, then x̂φ is a class term.

(S=) If ct and ct′ are class terms, then ct = ct′ is a wff.

The (classical) class-identity-truth-function is the function f= :
∏
D({>,⊥}2)→

{>,⊥} defined, for all (vd, v
′
d)d∈D ∈

∏
D({>,⊥}2), by f=((vd, v

′
d)d∈D) = >

if vd = v′d for all d ∈ D and f=((vd, v
′
d)d∈D) = ⊥ otherwise, which is applied

thus: E (x̂φ = ŷψ) = f=((E (φ(x/cd)),E (ψ(y/cd)))d∈D).

(KF=) The kleenified class-identity-truth-function is kf= :
∏
D({>,⊥, ?}2)→

{>,⊥, ?} given, for all (vd, v
′
d)d∈D ∈

∏
D({>,⊥, ?}2), by

• kf=((vd, v
′
d)d∈D) = > if vd = v′d = > or vd = v′d = ⊥ for all

d ∈ D,

• kf=((vd, v
′
d)d∈D) = ⊥ if (vd = > and v′d = ⊥) or (vd = ⊥ and

v′d = >) for some d ∈ D, and

• kf=((vd, v
′
d)d∈D) = ? otherwise.

(E=) E(x̂φ = ŷψ) = kf=((E(φ(x/cd)), E(ψ(y/cd)))d∈D).

I refer the reader to (Horsten and Linnebo 2015) for more on identification
of classes.

4.1 Class membership and Russell’s Paradox

So far, classes in our language are practically inert, only being allowed to
occur flanking the identity symbol. This is changed by adding class mem-
bership statements, following (Maddy 1983) and (Maddy 2000). This is the
third element of our language for which the semantics has to be specified by
reference to the previous level because its value may depend on the value of
a sentence of higher syntactic complexity. And again the semantic function
is an identity function (with no exceptions, like reference and unlike truth).

13



(S∈) If t is a term and ct is a class term, then t ∈ ct is a wff.

The (classical) membership-truth-function is the identity function f∈ : {>,⊥} →
{>,⊥}, which is applied thus: E (t ∈ x̂φ) = f∈(E−(φ(x/t))).

(KF∈) The kleenified membership-truth-function is the identity function
kf∈ : {>,⊥, ?} → {>,⊥, ?}.

(E∈) E(t ∈ x̂φ) = kf∈(E−(φ(x/t))).

In order to allow classes to be members of classes, we further stipulate that

(S2̂) Every class term is a term.

However, when classes as well as non-classes can be elements of classes, the
semantics of φ(x/t) must be well-defined also when t is a class term, i.e. a
class term must make sense in any syntactic position where a(n ordinary)
term can occur. We achieve that with this simple stipulation, reflecting the
idea that a class term does not denote any individual:

(E )̂ E(ct) = ⊥ for every class term ct.

The intuitive denotation of a class term is modeled indirectly with (E(φ(x/cd)))d∈D
instead of E(x̂φ). (And since E(cct) = ct ∈ D, predicates can still be used to
express something about class terms.)

Russell’s Class is x̂(x /∈ x), so Russell’s Paradox arises from this sentence:
x̂(x /∈ x) ∈ x̂(x /∈ x). It is of course undefined, as is proved in (Maddy
1983).

4.2 Class functions

Returning to paradoxes of reference, we need diagonalization to formulate
Richard’s Paradox, and in order to model diagonalization we need functions
that apply to classes instead of to individual elements of the domain. Intu-
itively, a class function maps a class of objects from the domain to one object
from the domain (we will only introduce unary class functions). Identifying
such a class of objects with the element of

∏
D{>,⊥} for which the elements

of the class index the >-entries and the non-elements index the ⊥-entries,
we arrive at the following formal stipulations:

Let there be a finite set CF of class function symbols.

(SCF ) If cf is a class function symbol and ct is a class term, then cf(ct)
is a term.

(ICF ) For every cf ∈ CF , I(cf) is a function from
∏
D{>,⊥} to D.

A classical class-function is of the form I(cf) :
∏
D{>,⊥} → D, which is

applied thus: E (cf(x̂φ)) = I(cf)((E (φ(x/cd)))d∈D).

14



(KFCF ) The kleenified-I(cf) is the function kI(cf) :
∏
D{>,⊥, ?} → D?

given, for all (vd)d∈D ∈
∏
D{>,⊥, ?}, by

• kI(cf)((vd)d∈D) = d0 if every total precisification (v̄d)d∈D of
(vd)d∈D is such that I(cf)((v̄d)d∈D) = d0, and

• kI(cf)((vd)d∈D) = ? if there is no such d0.

(ECF ) E(cf(x̂φ)) = kI(cf)((E(φ(x/cd)))d∈D).

4.3 Richard’s Paradox

Richard’s Paradox: The set of all reals that are definable by a definite
description in English is countable, so it can be enumerated. Fix a method
of enumeration.16 Given an enumeration of a set of reals, we can diagonalize
out of it; fix also a specific method of diagonalization.17 This means that the
definite description

Richard’s description: the diagonalisation of the enumeration of
the set of all definable reals,

is both not definable (by the diagonalisation) and definable (by Richard’s
description).18

Formalization: In essence, diagonalization is a function that maps count-
able sets of real numbers to a real number not in that set. The procedure of
changing the nth decimal of the nth real number in some numbering of them
is one way to do that, but we can abstract from the specifics here. We can
simply stipulate that d is a class-function symbol such that I(d), informally
characterized, is a function that sends each proper subset of R to a real
number not in that subset. Formally, I(d) is a function from

∏
D{>,⊥} to

D such that each element of
∏
D{>,⊥} for which it holds that (1) all entries

indexed by non-reals are ⊥ and (2) at least one entry indexed by a real is ⊥
too is mapped to a real that indexes an entry which is ⊥. For definiteness,
say that every other element of

∏
D{>,⊥} is mapped to ⊥.

If we further let x and y be variables and C and P be unary predicates such
that I(C) = T and I(P ) = R, then Richard’s description can be formalized
like this:

d(x̂(P (x) ∧ ∃y(C(y) ∧ r(y) ≡ x))) (R)

16For example the enumeration which results from ordering the reals primarily by the
length of, and secondarily alphabetically by, their definite description (or the first of these
by the same ordering when there are more definite descriptions of the same number); i.e.
a number with a shorter description always comes before a number with (only) a longer
description, and numbers with (shortest) descriptions of the same length are ordered
alphabetically.

17For example, take the real number in the interval [0, 1) which for its nth decimal has
the sum of 2 and the nth decimal of the nth real in the enumeration under the convention
that 2 + 8 = 0 and 2 + 9 = 1. This number is not in the set, since it differs from each
number in the set on at least one decimal. (The decimal representation of a real is unique.
There is only the one exception, made irrelevant by the use of 2 as the one addend, that
a real with a decimal representation with a “tail” of 0’s also has a decimal representation
with a “tail” of 9’s and vice versa.)

18Richard 1905.

15



Proof of undefinedness: First, note that the kleenified function kI(d) is
such that an element of

∏
D{>,⊥, ?} for which it holds that

1. every entry indexed by a non-real is ⊥,

2. at most countably many entries indexed by reals are >, and

3. the rest of the entries indexed by reals are ?

is mapped to ?. This follows from the fact that the different total precisifi-
cations of such an element are mapped to different real numbers (or, in one
case, to ⊥).

By induction on the levels, it can be shown that (R) is undefined. The base
case and the limit case are trivial. At every successor level, the undefinedness
of (R) follows from the fact that it is an element of

∏
D{>,⊥, ?} with the

characteristics 1.-3. that kI(d) is applied to. This can be seen from the
following:

1. P (c) and therefore P (c)∧∃y(C(y)∧r(y) ≡ c) are false for any constant
c that denotes a non-real.

2. There are only countably many closed terms t such that C(ct) is
true, and therefore at most countably many reals r such that P (cr) ∧
∃y(C(y) ∧ r(y) ≡ cr) is true.

3. P (c) ∧ ∃y(C(y) ∧ r(y) ≡ c) is not false for any c denoting a real.
For by the induction hypothesis, r(c(R)) is undefined, so r(c(R)) ≡ c
is undefined, so C(c(R)) ∧ r(c(R)) ≡ c is undefined ((R) contains no
constants and is an element of T ), so ∃y(C(y)∧ r(y) ≡ c) is not false.
As P (c) is true, P (c) ∧ ∃y(C(y) ∧ r(y) ≡ c) is not false.

5 Kripke’s supervaluation

What we have accomplished is a completely unified Kripkean approach to
truth, denotation, classes and abstraction. The means to that end was
the concept of kleenification. That concept can also be put into service
to achieve unification along another dimension, namely between the strong
Kleene scheme – which we have focused on until now – and the seemingly
quite different supervaluation scheme. The latter can also be recovered by
kleenification of bivalent semantics. Let me explain that informally and
through examples first.

When a model is considered fixed, each sentence corresponds to a function
that maps E− to a truth value. A sentence that does not contain T , r or
∈ corresponds to a constant function. For instance, B(s), where B means
“is black” and s means “snow”, maps every possible E− to ⊥, assuming a
natural model. On the other hand, T (cφ) is associated – in the classical case
– with a function that maps evaluations E− according to which φ is true to
>, and evaluations E− according to which φ is false to ⊥. The function that
corresponds to complex sentences is composed out of the functions associated

16



with its constituents. For classical semantics, the method for composing is
given by the classical functions and the classical evaluation clauses above.
For instance, ¬T (cφ) corresponds to the function that maps E− to ⊥ (>)
if φ is true (false) according to E−, which means that T (cφ) ∧ ¬T (cφ) also
corresponds to the constant function that maps every possible E− to ⊥.

When we kleenify the functions fT , f¬, and f∧ individually and then com-
pose the results, as we have done above, the function for T (cφ)∧¬T (cφ) that
comes out of it is not constant; it maps evaluations E− according to which
φ is undefined to ?. But if, instead, we first compose the classical functions
and then kleenify, we get a different result. Kleenification of a constant
function yields a constant function, so again T (cφ) ∧ ¬T (cφ) is mapped to
⊥ in all cases.

In section 1 we defined the jump, J , as a function from evaluations to
evaluations through the recursive definition of E given E−. Let the classical
jump (think of the revision rule of Gupta’s (1982) revision theory), J ,
be defined similarly as the function that maps the classical evaluation (a
funtion from D to D) E− to the classical evaluation E .19 Then consider, for
each d ∈ D, the function σd defined by σd(E−) = J (E−)(d). This function
is of type

∏
DD → D. The kleenification of σd, kσd, is therefore of type∏

DD
? → D?. What does it take for kσd(E−) to be an element of D rather

than equal to ?? That happens when all the classical evaluations that are
precisifications of E− are mapped to the same element of D. That is, when
d is a sentence, E− is mapped to > (⊥) iff all the classical evaluations that
are precisifications of E− are mapped to > (⊥). That is precisely the simple
kind of supervaluation discusses by Kripke.

This simple supervaluation theory employs quantification over all total pre-
cisifications of the given evaluation. Kripke considers two variations, in
which the quantification is restricted to consistent and maximally consistent
precisifications, respectively. To reconstruct those variations in the present
approach we finally need to make use of the full generality of the definition
of “kleenification”. Recall that the definition allows for kleenification of not
only functions of the type

∏
j∈J Aj → B, but also of functions for which the

domain is a proper subset of
∏
j∈J Aj . The effect of “removing” elements of∏

j∈J Aj is that fewer precisifications of a given element of
∏
j∈J A

?
j have to

“agree” in order to map that element to a value in B. The precisifications to
be disregarded could for example be those that are not consistent or those
that are not maximally consistent. Therefore, the more advanced forms of
supervaluation are achieved in the same way as the simple form, except that
instead of kleenifying the functions σd, we kleenify the restriction of σd to
the subsets of

∏
DD consisting of (for the first variation) those functions

that do not map any sentence together with its negation to > or (for the
second variation) those functions that for each sentence maps that sentence
to > and its negation to ⊥ or vice versa.

19The clauses (Ec), (Ed) and (E )̂ holds also when “E” is replaced with “E ”. With that
stipulation, J has been completely specified.

17



Acknowledgments

I am grateful to Øystein Linnebo, Toby Meadows and two anonymous re-
viewers for extensive and valuable feedback. This research is supported by
the Analysis Trust.

References

Bernays, P. and D. Hilbert (1939). Grundlagen der Mathematik (zweiter
Band). Verlag von Julius Springer.

Gupta, A. (1982). Truth and paradox. Journal of Philosophical Logic 11,
1–60.

Hansen, C. S. (2012). A Kripkean solution to paradoxes of denotation. In
D. Lassiter and M. Slavkovik (Eds.), New Directions in Logic, Language,
and Computation. Springer.

Horsten, L. and Ø. Linnebo (2015). Term models for abstraction principes.
Journal of Philosophical Logic, published online.

Kleene, S. C. (1952). Introduction to Metamathematics. North-Holland Pub-
lishing Company.

König, J. (1905). Über die Grundlagen der Mengenlehre und das Kontinu-
umproblem. Mathematische Annalen 61, 156–160. Translated as “On the
foundations of set theory and the continuum problem” in van Heijenoort
1967.

Kremer, M. (1990). Paradox and reference. In J. M. Dunn and A. Gupta
(Eds.), Truth and Consequences. Kluwer Academic Publishers.

Kripke, S. (1975). Outline of a theory of truth. The Journal of Philosophy 72,
690–716.

Kroon, F. (1991). Denotation and description in free logic. Theoria 57, 17–
41.

Maddy, P. (1983). Proper classes. Journal of Symbolic Logic 48, 113–139.

Maddy, P. (2000). A theory of sets and classes. In Between Logic and Intu-
ition: Essays in Honor of Charles Parsons. Cambridge University Press.

Priest, G. (2006). Doubt Truth to be a Liar. Oxford University Press.

Richard, J. (1905). Les principes des mathématiques et le problème des
ensembles. Revue Générale des Sciences Pures et Appliquées 16, 541.
Translated as “The principles of mathematics and the problem of sets”
in van Heijenoort 1967.

Russell, B. (1908). Mathematical logic as based on the theory of types.
American Journal of Mathematics 30, 222–262. Reprinted in van Hei-
jenoort 1967.

Simmons, K. (2005). A Berry and a Russell without self-reference. Philo-
sophical Studies 126, 253–261.

Uzquiano, G. (2004). An infinitary paradox of denotation. Analysis 64, 128–
131.

18



van Heijenoort, J. (1967). From Frege to Gödel: A Source Book in Mathe-
matical Logic, 1879–1931. Harvard University Press.

19


	Kripke's theory reformulated
	Abstract fixed point theorem
	Denotation
	Reference
	Definite descriptions
	Berry's Paradox
	Other paradoxes

	Abstraction
	Class membership and Russell's Paradox
	Class functions
	Richard's Paradox

	Kripke's supervaluation

