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Inductive reasoning in simple worlds

Casper Storm Hansen

For you and me, inductive reasoning is complicated. To fully live up to the de-
mands of Bayesianism, we would have to assign prior credences to every conceiv-
able possibility about the future. That’s a lot! This complication is an important
obstacle when trying to figure out whether it is rational to be an inductivist or
a Humean induction skeptic: i.e., whether we ought to increase the credences we
assign to future events of a certain kind if we observe earlier events of the same
kind, or keep them steady.

However, useful insights about inductive reasoning can be gained by considering
simplified models of such reasoning, in the form of agents in worlds with fewer
possibilities. That is the working hypothesis of this paper.

To be more precise, the worlds I will describe are epistemically simpler, because
their inhabitants know a priori (or, if you like, have been informed by a com-
pletely trustworthy god) that certain possibilities will not obtain, and are left
with a range of epistemic possibilities that lends itself to elegant mathematical
treatment. With the aim of improving on Huemer’s (2009) contribution to the
subject, I will consider a world in which the epistemic agents know that events
are governed by constant objective chances. And with the aim of aiding the
nomological-explanatory attempt to combat inductive skepticism, I will consider
two worlds that are a priori known to be governed by temporally restricted de-
terministic laws. The paper concludes with a short discussion of the relevance of
these simple worlds to our complicated world.

1 Constant objective chances

In World 1, an epistemic agent is suddenly created. At the moment of her cre-
ation, she is equipped with ideal rationality, but no empirical knowledge. One
of the first things she notices is that some objects in World 1 have a property
A and some have a property B. She becomes interested in predicting whether
not-yet-observed B things are A things. We stipulate that she knows there is a
constant objective chance of B things being A things.

I will follow Huemer (2009) in numbering the Bs according to the order in which
they are observed by the agent; in using the notation “An” to denote the propo-
sition that the nth B is an A; and in using “Un” to denote the proposition that
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all of the first n Bs are As. Thus, Un implies An, but the latter is consistent
with an earlier-observed B not being an A. Let P be the agent’s credence func-
tion at the time of her creation. For a given n, we are interested in whether her
credence in An+1 will grow, in between her moment of creation and the instant
of time when she observes B number n, if all of the first n Bs are As. Thus,
we will also adopt the following definitions of Huemer’s: of inductivism as the
position that P (An+1 |Un) > P (An+1); of inductive skepticism as the position
that P (An+1 |Un) = P (An+1); and of counter-inductivism as the position that
P (An+1 |Un) < P (An+1).

Inspired in part by Bayes (1763) and Laplace (1814), Huemer argues that our
ideally rational epistemic agent is an inductivist. I will argue for the same con-
clusion, but show that it can be reached much more easily than it is by Huemer.

The first step of Huemer’s argument consists of applying the definition of condi-
tional probability:

P (An+1 |Un) =
P (An+1 ∧Un)

P (Un)
=

P (Un+1)

P (Un)
(1)

The second step is to introduce a constant, C, for the objective chance that
a B is an A; and a probability density function, ρ, for the agent’s credences
about its value. There are thus two levels of probability in play: one of objective
probabilities and, “on top of that,” one of the agent’s epistemic probabilities.
Only C resides on the former, while the latter is host to P and ρ. Using the
continuous version of the theorem of total probability, Huemer can then rewrite
the denominator and the numerator of (1) like this:

P (Un) =

∫ 1

0
ρ(c) · P (Un |C = c) dc

P (Un+1) =

∫ 1

0
ρ(c) · P (Un+1 |C = c) dc

(2)

Huemer’s third step is to argue that, based on the assumption of the Principle
of Indifference, which he supplements with something he calls the “Explanatory
Priority Proviso,” it is rational for our agent to adopt a uniform probability
distribution for the value of C on [0, 1]:

ρ(c) = 1 for c ∈ [0, 1] (3)

These assumptions are unnecessarily strong. However, I will finish the summary
before explaining why. The uniform distribution allows Huemer to eliminate the
first term of each of the two integrands in (2). His fourth step is to rewrite the
two other terms using Lewis’ (1980) Principal Principle, according to which the
epistemic probability of Um, conditional on the objective chance of each trial
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having outcome A being c, is cm. The results are

P (Un) =

∫ 1

0
cn dc =

1

n+ 1
,

P (Un+1) =

∫ 1

0
cn+1 dc =

1

n+ 2
.

(4)

Plugging (4) back into (1) and reducing, the result is

P (An+1 |Un) =
n+ 1

n+ 2
.

Based on the same assumptions, Huemer calculates that P (An+1) = 1
2 , so

P (An+1 |Un) is larger whenever n is positive. Therefore, he concludes that the
ideally rational agent is an inductivist.

Later in the same paper, Huemer allows for the possibility that the probability-
density distribution in (3) may be wrong, and considers some other ways that
the Principle of Indifference and the Explanatory Priority Proviso might be used
to justify some alternative distributions. He shows that inductivism follows for
all the functions he considers.

That concludes my summary. The point I want to make is that the use of these
controversial principles to reach the inductivist conclusion is superfluous, as the
same conclusion can be achieved on the basis of a much weaker assumption. I
would call someone who assigns all of their credence for the value of C to just
one value a “dogmatist.” This label is justified by the fact that updating by
conditionalization does not allow an extreme prior probability of 1 to change to a
posterior probability different from 1; so, assigning all the subjective probability
to just one value amounts to deciding that no amount of empirical evidence will
make you change your mind. It is thus clear (and I will prove mathematically)
that someone who does that will be a skeptic in Huemer’s sense. But it turns
out that, in World 1, being a dogmatist is not merely a sufficient condition for
being a skeptic, it is also a necessary condition. That is, merely being open to
the possibility of more than one value for the objective probability is enough to
allow induction to shift the agent’s probability upwards as more confirmations
come in. Thus, for the purpose of arguing for inductivism, we can replace the
Principle of Indifference and the Explanatory Priority Proviso with this much
weaker assumption: it is not rational to be dogmatic about the value of C.

To prove that this assumption suffices, I first need to make the idea of ρ assigning
all the probability to a single value of C make sense, even though ρ is a probability-
density function. That can be achieved by means of the Dirac delta function,
which can heuristically be characterized as the function δ such that δ(0) = ∞
and δ(x) = 0 for all x ̸= 0, and such that the integral of the function over
any interval that contains 0 is 1.1 Each dogmatic distribution can therefore be

1See, e.g., Kanwal (1997) for a rigorous definition.
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represented by a function ρ such that ρ(x) = δ(x− c), where c is the value of C
that is dogmatically assumed to be correct. Let us call such a function dogmatic.

The following theorem is the key to arguing for my claim.2 To state it, we first
need a definition.

Definition. A generalized probability-density function is a function of the form

ρ(x) =
∑
i∈I

aiδ(x− bi) +

(
1−

∑
i∈I

ai

)
ρ0(x) ,

where ρ0 is a regular probability-density function, I is a finite or countable index
set, the ais and their sum belong to the interval [0, 1], and the bis belong to the
domain of the function.

Theorem. For any generalized probability-density function ρ on [0, 1] and strictly
increasing functions f and g on the same interval, it holds that∫ 1

0
ρ(x)f(x)g(x) dx ≥

∫ 1

0
ρ(x)f(x) dx

∫ 1

0
ρ(x)g(x) dx . (5)

If ρ is dogmatic, then equality holds; otherwise strict inequality holds.

Proof. For any x, y ∈ [0, 1], it follows from the assumptions that ρ(x)ρ(y) ≥ 0
and (f(x)− f(y))(g(x)− g(y)) ≥ 0. Hence,∫ 1

0

∫ 1

0
ρ(x)ρ(y)(f(x)− f(y))(g(x)− g(y)) dx dy ≥ 0 . (6)

If ρ is dogmatic, then ρ(x)ρ(y) ̸= 0 only if x = y; and in that case, the two
last factors in the integrand are both equal to 0, so equality holds in (6). Oth-
erwise, there are x0 and y0 such that x0 ̸= y0 and the probability of any neigh-
borhood of each is positive. When x0 and y0 are different, it also follows that
(f(x)− f(y))(g(x)− g(y)) > 0 for all x and y in some neighborhood of x0 and
some neighborhood of y0. Therefore, strict inequality holds in (6).

By multiplying into the parentheses and exploiting the additivity of integration,
the double integral can be rewritten as the sum of four double integrals. The first
two are∫ 1

0

∫ 1

0
ρ(x)ρ(y)f(x)g(x) dx dy =

∫ 1

0
ρ(y)

∫ 1

0
ρ(x)f(x)g(x) dx dy

=

∫ 1

0
ρ(x)f(x)g(x) dx

∫ 1

0
ρ(y) dy

=

∫ 1

0
ρ(x)f(x)g(x) dx

2It is a version of the Fortuin-Kasteleyn-Ginibre Inequality (Fortuin, Kasteleyn, and Ginibre
1971).
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and

−
∫ 1

0

∫ 1

0
ρ(x)ρ(y)f(x)g(y) dx dy = −

∫ 1

0
ρ(y)g(y)

∫ 1

0
ρ(x)f(x) dx dy

= −
∫ 1

0
ρ(x)f(x) dx

∫ 1

0
ρ(y)g(y) dy

= −
∫ 1

0
ρ(x)f(x) dx

∫ 1

0
ρ(x)g(x) dx .

By renaming variables, the third and fourth addends can be shown to be equal to
the first and second, respectively; so, division by 2 eliminates them. Adding the
second addend on both sides of (6) (and its = and > versions) then produces (5)
(and its = and > versions).

Let us apply the theorem. Go back to (2), skip what I referred to as “Huemer’s
third step,” and just take the fourth step. That results in these equations:

P (Un) =

∫ 1

0
ρ(c) · cn dc

P (Un+1) =

∫ 1

0
ρ(c) · cn+1 dc

Similarly, we have

P (An+1) =

∫ 1

0
ρ(c) · cdc ,

so it follows from the theorem that

P (Un+1) ≥ P (Un) · P (An+1) .

Assuming that P (Un) > 0, it thus follows from (1) that

P (An+1 |Un) ≥ P (An+1) ,

which is the disjunction of inductivism and skepticism. The last part of the
theorem allows us to distinguish between the two: if ρ is a dogmatic function,
then skepticism follows; if not, then inductivism follows.3

This is a complete characterization of generalized probability-density functions,
dividing them into those that lead to inductivism and those that lead to skepti-
cism. And we can see that the latter class of functions is small indeed: only the
absence of any doubt whatsoever will prevent the agent from learning through
induction. I claim that the irrationality of such dogmatism is immediately obvi-
ous, independently of whether it can be reduced to more fundamental principles.
Thus, in World 1, Humean inductive skepticism can be soundly rejected.

3The assumption that P (Un) > 0 is only false if ρ is the Dirac delta function itself. This is
a dogmatic function, but it leads to neither inductivism, skepticism, nor counter-inductivism,
as defined by Huemer, for P (An+1 |Un) is not defined. I will set this limit case aside.
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2 Expiring deterministic laws

According to the nomological-explanatory solution to the problem of induction
advocated by Armstrong (1983, 1991), BonJour (1998), and Foster (1983, 2004),
there are many cases in which observation of a good number of Bs that are all
As warrants an inference to the best explanation; which, according to them, is
that there is a universal, deterministic law that implies that all Bs are As by
necessity. Subsequent to making such inference, a rational agent can deduce that
the next B will be an A.

The defenders of this solution believe that the possibility of temporally restricted
laws is a major challenge for them. That is, the observation of a bunch of Bs that
are all As could potentially also be explained by the existence of a law accord-
ing to which all Bs so far are As by necessity; and they think that this would
undermine inductivism. So, they have dedicated considerable energy to arguing
that universal laws make for better (i.e., a priori more likely) explanations. The
point of this section is to argue that that assumption is not necessary: just like
with Huemer, Bayes, and Laplace above, it is easier to argue for inductivism than
Armstrong, BonJour, and Foster realize.

Consider World 2A in which an epistemic agent is created knowing that at the
moment of creation, there is a deterministic law in effect necessitating that Bs
be As. She also knows that the law is temporally restricted, i.e., that it will expire
after some unknown number, N , of B observations. Since we saw in the previous
section that known, constant, objective chances are bad for inductivism, let us
also stipulate that after the law has expired, each B has an objective chance, C,
of being A for some constant C ∈ [0, 1) that is known to our agent. Even in
these apparently terrible circumstances, the agent will be an inductivist, unless
she assigns priors in an extremely dogmatic way.

This can be seen from the following. The objective probability of An+1 is equal
to C if the law has expired by B number n+ 1, i.e., if n+ 1 > N . Otherwise, it
is equal to 1. Hence, the subjective probability of An+1, before Un is known, can
be expressed as

P (An+1) =
n∑

i=1

P (N = i) · C +
∞∑

i=n+1

P (N = i) · 1 .

Similarly, when Un is known, the subjective probability of An+1 is

P (An+1 |Un) =

n∑
i=1

P (N = i |Un) · C +

∞∑
i=n+1

P (N = i |Un) · 1 .

At that point, the subjective probability for the proposition that the law covers
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exactly i Bs is as follows, according to Bayes’ Theorem:

P (N = i |Un) =
P (Un |N = i) · P (N = i)

P (Un)
=


Cn−i · P (N = i)

P (Un)
if i ≤ n

1 · P (N = i)

P (Un)
if i ≥ n

So, both P (An+1) and P (An+1 |Un) are weighted averages of some 1s and some
Cs, which are smaller than 1. In the latter average, the 1s have greater weights
than in the former average or, in some limit cases, the same weight. Hence,
P (An+1 |Un) ≥ P (An+1). There are two limit cases. The first is when P (N =1),
. . . , P (N =n− 1) = 0, or equivalently when P (Un) = 1. The second is when
P (N =n+1), . . . = 0. Both of these cases must be characterized as extremely
dogmatic.

I want to emphasize with an example how remarkable, in its counter-intuitive-
ness, this simple mathematical result is. Let us say that the agent is considering
whether B number ten will have the A property, before she has observed any Bs.
In this example, she is almost certain that the temporally restricted law ensures
that exactly the first nine Bs will be As, and only assigns a tiny amount of
credence to the possibility that it might expire earlier and to the possibility that
it might expire later. She is also certain that when it expires, all subsequent Bs
will be non-As. According to the intuition that drives Armstrong, BonJour, and
Foster, this should be a awful case for inductivism. Yet, our Bayesian epistemic
agent realizes that her credence in A10 will be higher if she observes U9 than it
currently is. That is, she is an inductivist with respect to A10. Observation of U9

will make her credence in A10 go up, because the only hypotheses disconfirmed
by this evidence are some according to which the objective probability of A10

is 0.

When discussing World 2A with colleagues, I have learned that some have the
intuition that I am still being too nice to the inductivist, because the assumption
of a known, constant, objective probability seems too much like “regularity in
nature.” According to them, we should instead assume that the expiration of the
deterministic law is followed by the opposite entirely: total chaos! That should
undermine inductivism! But what, in terms of a probability distribution, does
such an assumption look like? The best answer I can think of is a distribution that
assigns the same probability to every post-law sequence. That is complete ran-
domness; every possibility is treated the same; it is the opposite of a deterministic
law! However, that is the same probability distribution as the one that results
from the assumption of a constant objective probability, with that probability
being 1

2 . So, no; the result is again—perhaps counter-intuitively—inductivism.

Since I cannot cover every option in a short paper—indeed, in any finite paper—
I will instead leave this exercise for the nomological-explanatory reader: come
up with a credence distribution for what comes after the law’s expiration that
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implies non-inductivism, and then convince yourself that it is the most reasonable
distribution, and that it would be adopted by an ideally rational agent. You will
rejoice in your failure, I think.

Is it possible to be a counter-inductivist in some world different from 2A where the
inhabitants also know that it is governed by an expiring deterministic law? Yes,
as it turns out. However, one has to go a bit out of one’s way to design a world
and an agent specifically with that goal in mind. I will describe one such contrived
example. In World 2B, there is also a temporally restricted deterministic law that
lasts for N rounds, and its expiration is also followed by a constant, objective
probability of C ∈ (0, 1); except, that is, for the first round after the law has
expired, where the objective probability is some lower value C0 ∈ [0, C). Again,
the epistemic agent in this world knows this, including the values of C and C0.
The temporary drop in objective probability means that some (but only some)
priors are counter-inductivist. Since it both makes counter-inductivism easier to
“achieve,” and greatly simplifies the mathematics, let us say that C0 = 0.

The analogues to the above equations are as follows:

P (An+1) =
n−1∑
i=1

P (N = i) · C + P (N =n) · C0 +
∞∑

i=n+1

P (N = i) · 1

P (An+1 |Un) =

n−1∑
i=1

P (N = i |Un) ·C +P (N =n |Un) ·C0 +

∞∑
i=n+1

P (N = i |Un) · 1

P (N = i |Un) =
P (Un |N = i) · P (N = i)

P (Un)
=


C0 · Cn−1−i · P (N = i)

P (Un)
if i < n

1 · P (N = i)

P (Un)
if i ≥ n

With C0 = 0, we therefore have

P (An+1) =
n−1∑
i=1

P (N = i) · C + P (N =n) · 0 +
∞∑

i=n+1

P (N = i) · 1 ,

P (An+1 |Un) =

n−1∑
i=1

0 · C +
P (N =n)

P (Un)
· 0 +

∞∑
i=n+1

P (N = i)

P (Un)
· 1 .

Thus, before learning Un, the credence in An+1 is an average of some Cs, a 0, and
some 1s; afterwards, it is just an average of a 0 and some 1s, with the relative
weights of the 0 and the 1s staying the same. Hence, the credence decreases iff
the weight of the 1s divided by the weights of the 0 and the 1s is smaller than C.
That is,

P (An+1 |Un) < P (An+1) ↔ P (N >n)

P (N ≥n)
< C .
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This means that unless C is close to 1, the agent, in order to be a counter-
inductivist, has to assign a relatively large credence to the possibility that the
law expires after exactly n rounds, as opposed to at any later time.

3 Relevance to our world

Why is any of this relevant to our complicated world? We do not have the same
a priori knowledge as any of the three agents we have considered, so even if they
should be inductivists, how does that prove that we should? Well, it does not
prove it. But the conclusions about the simple worlds make it more plausible.
Here is why. Let {πi}i∈I be a partition of all the possibilities that you and I, in
our complicated world, would have to take into consideration if we did not yet
have any empirical evidence. Using the theorem of total probability, we can then
rewrite the condition for inductivism, P (An+1 |Un) > P (An+1), as∑

i∈I
P (An+1 |Un ∧πi) · P (πi) > P (An+1) .

That is, it is a weighted average over the elements of the partition that must be
larger than P (An+1). If some elements of the partition with positive weights are,
by themselves, inductivist—i.e., P (An+1 |Un ∧πi) > P (An+1)—then the overall
probability distribution is also inductivist, unless other elements of the parti-
tion are counter-inductivist, and sufficiently counter-inductivist and with enough
weight to fully counterbalance the inductivist elements.

Such counterbalancing becomes more difficult when one realizes that the entirety
of the possibility that there is a constant objective chance of Bs being As would
make for an inductivist part of a partition. That is the relevance of World 1. And
it becomes more difficult yet when it is demonstrated that the possibility of laws
only being in effect for a limited time does not obviously make for a counter-
inductivist part, as assumed by the advocates of the nomological-explanatory
solution; and that there are in fact sub-possibilities thereof that definitely (World
2A) or plausibly (World 2B) make for inductivist parts.

These considerations show that the inductivists are holding better cards than
they themselves realize. However, they are not sufficient by themselves for a full
argument for inductivism—for such an argument would also have to take account
of Goodman’s (1955) grue challenge and Smithson’s (2017) reply to Huemer,
among other things—but I believe they can be part of one.
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