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Abstract: Two reverse supertasks—one new and one invented
by Pérez Laraudogoitia (2014)—are discussed. Contra Kerkvliet
(2016) and Pérez Laraudogoitia, it is argued that these super-
tasks cannot be used to conduct fair infinite lotteries, i.e., lot-
teries on the set of natural numbers with a uniform probability
distribution. The new supertask involves an infinity of gods who
collectively select a natural number by each removing one ball
from a collection of initially infinitely many balls in a reverse
omega-sequence of actions.
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1 A story

The Society of Gods—which last gathered its denumerably infinitely many
card-holding members in 1964 to demonstrate how they could stop a walking
man by the sheer force of their intentions1—has just reconvened. This time,
they plan to hold a fair infinite lottery. One can enter the lottery by buying
a ticket with any natural number printed on it. The gods therefore produce
an infinity of balls, one for each of the natural numbers and each marked
with that number, and use them to draw a winner.

The membership cards of the Society are also numbered by the naturals,
and according to that numbering the collection of balls is passed from god
to god in reverse order, such that in the span of one minute the urn has
been in the possession of each member of the Society. God number 1 will
be passed the urn at t = 1, and it is his job to remove all but one ball from
the collection; the remaining ball contains the winning number. Before that,
the urn will be with god number 2, who gets it at t = 1

2 and reduces the
number of balls to 2. The third god will get the collection at t = 1

3 and
he must leave 3 balls. In general, god number n is handed the collection at
t = 1

n , reduces the number of balls in it to n and, if n 6= 1, passes it on to

1The minutes of that meeting can be found on pages 259–260 of (Benardete 1964).
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god number n− 1. At t = 0, the collection contains all the infinitely many
balls.

However, the gods do not simply give themselves the instruction when god n
receives n + 1 balls, he must leave n balls in the collection. If they did, it
would not ensure that each god n actually receives n+ 1 balls. They might,
for example, all receive the collection still containing all the balls, thus
rendering them unable to follow the instruction, because all the previous
gods had received it still containing all the balls and been unable to follow
the instruction. Or, more generally, a god might receive the wrong number
of balls because all the previous gods had received the wrong number of balls.
The gods guard themselves against this danger by instead giving themselves
this more complex instruction: if god n receives n+ 1 balls, he must leave n
balls according to rule R (to be specified); if he receives any other number
(including zero), he passes on n balls numbered 1 through n, adding and
removing balls as necessary. If any god were to follow the consequent of
the second part of the instruction because he receives the wrong number of
balls, he would affect the contents of the collection in a way that might not
be in accordance with rule R, thus ruining the experiment. However, the
complex instruction prevents this from happening. The instruction ensures
that each god leaves the right number of balls, no matter what. Ergo, each
god will act on the first part of the instruction, and the second part is never
actually used.2 In this way, the gods ensure that the experiment runs as
intended.

They also all agree to remove balls in a random way. That is, they agree that
R should be “do it randomly”. Or to be more precise, each god promises to
employ a uniform probability distribution over the finite number of options
he has for how to remove balls. That way, they believe, they ensure that,
collectively, they conduct a fair infinite lottery on the natural numbers.

2 Finite additivity

According to de Finetti (1974), it ought to be considered rationally permissi-
ble to have a uniform probability distribution on the elements of a countably
infinite outcome space: for instance, in the case of a lottery on the natural
numbers. Such a distribution must assign probability 0 to each n ∈ N but
probability 1 to N, in violation of the countable additivity principle. Only
the weaker principle of finite additivity holds, he believes.

De Finetti finds it unreasonable that—as is the case according to Kol-
mogorov’s (1933) definition—any probability distribution on the natural
numbers has to be “biased” towards the low numbers, in the sense that

2In this respect they take inspiration from (Pérez Laraudogoitia 2011).
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for any real number p ∈ [0, 1), there must be a natural number n such that
the probability that the outcome of such a lottery is less than n is equal to
or higher than p.

Two recent papers have offered support for de Finetti’s claim, both of them
through considerations concerned with reverse supertasks that seem to pro-
vide mechanisms for realizing such fair lotteries on the natural numbers.
Pérez Laraudogoitia (2014) presents a supertask of his own and claims that
he can use it to disprove the principle of countable additivity. Kerkvliet
(2016) provides a mathematical model which violates countable additivity
of the supertask described above and asserts that the model is “not contro-
versial”.

I will first summarize Kerkvliet’s basic modeling assumption, along with his
results. In section 3, I will show that there is a fatal flaw in Kerkvliet’s
model. Then, in section 4, I will examine the supertask devised by Pérez
Laraudogoitia and his claim that it can be used to disprove countable addi-
tivity. The final section assesses the dialectical situation.

For present purposes, Kerkvliet’s paper can be summarized quite briefly.
His model is centered on a constraint that is a formal equivalent of the
stipulation that each god makes a fair and random selection: conditional on
any given god n receiving any given ball number k as part of the collection
passed to him by god n + 1, the probability that ball number k remains in
the collection when it is passed to god number n−1 (or in the case of god 1:
is the final ball) must be n

n+1 . Based on this constraint, Kerkvliet proves two
things: first, that for any finite subset of N, the probability of the winning
number being in that subset is 0—as required by de Finetti. Second (and
actually not relevant for present purposes, but it would be an odd paper
summary that did not mention the primary point of the paper in question),
he proves that the probability distribution is otherwise underdetermined, in
the sense that for any subset of N which is neither finite nor co-finite, the
probability of the winning number being in that subset can be any number
in the interval [0, 1].

3 Deterministic and stochastic versions of the sce-
nario

The reader probably noticed that if the final paragraph is disregarded, sec-
tion 1 contains a description of a generic scenario that is more general than
a lottery. The “R” can be instantiated with other rules, some of which result
in deterministic versions of the scenario. They can be used to throw light
on the lottery. Here are some simple options for R:

R1. Each god removes the highest-numbered ball passed to him
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R2. Each god removes the lowest-numbered ball passed to him

R3. Each god removes the second-lowest-numbered ball passed to him

All three rules are deterministic. They are also all “locally consistent”, in
the sense that for each god it is consistent to follow the instructions using
that rule, irrespective of what previous gods have done. Option R1 is also
“globally consistent”: all the gods can follow that rule without contradic-
tion. Indeed, option R1 simply results in the ball numbered 1 remaining.

However, option R2 is globally inconsistent. There is no way the scenario
can play out with all the gods following that rule. And, even though op-
tion R3 is biased more towards low numbers than high numbers, it is globally
inconsistent as well. Based on these examples, it would seem that a rule has
to be strongly biased in favor of low numbers to be globally consistent.

We can confirm this conjecture, while also making it precise, by setting up
a formal framework for describing the space of all deterministic rules. The
most obvious way to do this is to use a function for which the function
value of any n ∈ N is the set of those balls that are left in the collection by
god n, as given by the numbers with which they are marked. However, it
will prove more interesting to use a type of description in which each god’s
choice is given relative to what he receives, in line with the three informal
rule descriptions above. A deterministic rule can then be identified with
a selection function s from N to the power set of N, such that for each
n ∈ N, s(n) is an n-element subset of {1, . . . , n+ 1}. Here, s(n) is the set of
those balls that god n leaves in the collection, as numbered by their relative
position in the collection that he receives, not by the numbers with which
they are marked. So, for example, s(2) = {1, 2} means that of the three
balls that god number 2 receives, he passes on the the lowest-numbered and
the second-lowest-numbered, while removing the highest-numbered.

This family of selection functions can be used to explore the relationship
between local and global consistency. Taking only local consistency into
account, it would seem that every selection function corresponds to a course
of action that the gods could take (for example, R1, R2, and R3 can each
be identified with such a function). However, because of global consistency,
only some of them actually do. Let us characterize the set of those that do.

We begin with a simpler problem: what does it take for the winning number
to be well-defined? (This is a necessary but not a sufficient condition for
consistency.) Say that god 1 selects the lowest-numbered ball passed to him
as the winning number, i.e., s(1) = {1} or, equivalently, {1} ⊂ s(1). It
is then possible, given just this information, that that ball is numbered 1.
The winning ball, if well-defined, is the lowest-numbered ball passed on by
god 2. That is again identical to the lowest-numbered ball passed on by
god 3 iff {1} ⊂ s(2). It is also identical to the lowest-numbered ball left in
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the collection by god 4 iff {1} ⊂ s(3). If all those conditions are met, it is
still a possibility that this is ball 1. But say that god 4 removed the lowest-
numbered ball passed on to him, i.e., {1} 6⊂ s(4). Then, the lowest possible
value of the winning ball is 2. Moving further back, god 5 would have had to
leave both the lowest-numbered and the second-lowest-numbered ball passed
to him in the collection, i.e., {1, 2} ⊂ s(5), for the lowest possible value of
the winning ball to still be 2 after we have taken him into consideration;
otherwise, it is 3.

We see, then, that the winning number is well-defined if and only if there
are only finitely many gods that raise the minimal possible value of the
winning number in this way. We can express this observation more formally
by defining the function l1 recursively as follows:

l1(0) = 1 l1(n + 1) =

{
l1(n) if {1, . . . , l1(n)} ⊂ s(n + 1)

l1(n) + 1 if {1, . . . , l1(n)} 6⊂ s(n + 1)

The winning number is well-defined iff there is an upper bound to the values
of l1(n) for n ∈ N.

We can identify a similar criterion for whether the penultimate ball—the
ball that makes it until god 1, but is discarded by him—has a well-defined
number. It is well-defined iff there is an upper bound to the values of l2(n)
for n ∈ N, where l2 is defined as follows:

l2(1) = 2 l2(n + 1) =

{
l2(n) if {1, . . . , l2(n)} ⊂ s(n + 1)

l2(n) + 1 if {1, . . . , l2(n)} 6⊂ s(n + 1)

In general, we can define lk for all k ∈ N as follows:

lk(k − 1) = k lk(n + 1) =

{
lk(n) if {1, . . . , lk(n)} ⊂ s(n + 1)

lk(n) + 1 if {1, . . . , lk(n)} 6⊂ s(n + 1)

The entire process conducted by the gods is well-defined iff there is an upper
bound to the values of lk(n) for n ∈ N for all k ∈ N.3

We have now shown that a very strong bias in favor of low numbers is
needed for a deterministic rule to be consistent. This is also relevant when
considering stochastic rules, for the possible outcomes of running the sce-
nario with the gods following a given stochastic rule are some or all of the
outcomes that the deterministic rules result in. (Here and until the final
section, “outcome” means the entire sequence of events during the super-
task, as described by a selection function, and not just a winning number.)

3The maximum of {l1(n)|n ∈ N} is the winning number, if it exists. The maximum of
{l2(n)|n ∈ N} is not necessarily the value of the penultimate ball; it is the value of the
highest-numbered ball that is among the last two; and similarly for lk for all k ≥ 2.
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If a stochastic rule has among its possible outcomes one or more of the se-
lection functions that describe an inconsistent deterministic rule, then that
stochastic rule is inconsistent. And that is the case for the stochastic rule

R4. Each god n chooses randomly and independently which ball to remove
according to a uniform distribution on {1, . . . , n + 1} and a relative
numbering of the balls

which corresponds to both the specific scenario described in section 1 and
to Kerkvliet’s constraint. According to rule R4, every selection function is
a possible outcome,4 so rule R4 is inconsistent.

4 Pérez Laraudogoitia’s coin-tossing supertask

Having failed to design a fair infinite lottery by removing balls from a col-
lection, the gods instead try to do it by tossing coins, as suggested by Pérez
Laraudogoitia (2014). Each god will toss a coin, and they will do it in the
same reverse order as before: god n will toss a coin at t = 1

n . They intend
to use this stochastic rule:

R1. (i) Each toss is such that the probability of tails and the probability
of heads are both 1

2 , independently of other tosses. (ii) A dollar coin
is used iff no previous toss made with a dollar coin came up tails;
otherwise a euro coin.

Following Pérez Laraudogoitia, the gods infer the following from part (ii) of
rule R1:

(A1) If, in a given tossing of the dollar coin, tails comes up, the dollar
coin shall not be tossed again. In particular, it is not possible for two
tossings of the dollar coin to give tails as a result. If at t = 1

n+1 the
dollar coin is tossed and comes up heads, the dollar coin will be tossed
again at t = 1

n .

(A2) The dollar coin cannot be tossed only a finite number of times (zero
included).

(A3) For any positive integer n, if the dollar coin is not tossed at t = 1
n+1 ,

then it will not be tossed at t = 1
n either.

The gods therefore believe that they can have a fair lottery on N0 by letting
the winning number be the number of the unique god who gets tails using

4Even though, of course, under rule R4 each selection function has probability 0.
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the dollar coin, or, if none of them does that, 0: those options exhaust the
possibilities, according to the above; and each one has probability 0, as can
be inferred from part (i) of rule R1 (see Pérez Laraudogoitia’s paper).

However, the gods are mistaken. R1 gives the appearance of being a rule the
gods can follow, because it is locally consistent for each god, but it is globally
inconsistent. I will explain why in two different ways: first in a simple way,
by comparing it with a specific deterministic rule, and then through more
formal considerations. The deterministic rule is the following:

R2. (i) Even-numbered gods place their coin heads up, and odd-numbered
gods place their coin tails up. (ii) A dollar coin is used if and only if
no previous toss made with a dollar coin came up tails; otherwise a
euro coin.

This rule is globally inconsistent. However, its second clause is identical to
the second clause of R1, and its first clause specifies something that must
be a possibility according to the first clause of R1. Therefore, R1 is globally
inconsistent.

The second way to explain it is by using a formal outcome space. When the
gods can use either a dollar coin or a euro coin, the outcome space is some
subset of {DH,DT,EH,ET}N, where DH stands for the dollar coin being
tossed and heads coming up, and similarly for DT , EH, and ET . Each
element of the outcome space is an omega-sequence. I will write it in the
opposite order of what is standard, in order to reflect the temporal order.
So, for example, the outcome in which god 1 tosses a tails with the dollar
coin after every other god got a heads with the dollar coin can be denoted
(. . . , DH,DH,DH,DT ).

Part (i) of rule R1 implies that for every element (. . . , a3, a2, a1) of {H,T}N,
there is an element (. . . , b3, b2, b1) of {DH,DT,EH,ET}N such that for all
n ∈ N, if an = H, then bn = DH or bn = EH; and if an = T , then bn = DT
or bn = ET , which is a possible outcome. “Possible outcome” here means
that only the element of chance can prevent it from becoming the actual
outcome; its status as possible cannot be defeasible in any other way, on
pain of contradiction. So contradiction is exactly what we get from part (ii)
of rule R1: that part implies (via (A1), (A2), and (A3)) that only elements
of the form (. . . , DH,DH,DH,DT,E, . . . , E), where each E is either EH
or ET , and the element (. . . , DH,DH,DH) are possible outcomes. Ergo,
it is again seen that R1 is globally inconsistent.5

5In Pérez Laraudogoitia’s original version of this supertask, the coin-tossing ceases
after the first tails, rather than the first tails resulting in a dollar coin being replaced with
a euro coin. I changed this detail to ensure that there is a way to translate the informal
requirement that each coin toss is fair and independent into a formal statement in a way
that is neutral between Pérez Laraudogoitia’s position and mine. I hope it is obvious
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5 Assessment of the dialectical situation

An option that should be taken into account is that the two generic scenarios
as such are impossible, and not only those instances thereof that we have
already shown to be inconsistent. One might suspect as much, given that
constraints that cannot be accounted for by causality are needed to uphold
consistency. (No causal explanations can be given for why the gods have
to be biased towards low numbers or for why they cannot follow rule R1.)
This impossibility could be due to a logical inconsistency not yet discovered,
or it might be that metaphysical possibility is more restricted than logical
possibility. And the impossibility could apply to these (generic) scenarios,
or to reverse supertasks in general, or even to all supertasks.6

What I have shown in this paper is that even if reverse supertasks are possi-
ble, the attempts that have been made in the literature so far to utilize them
to construct fair infinite lotteries have failed. And to the best of my knowl-
edge, there have been no suggestions for concrete mechanisms for effecting
fair countable lotteries that do not involve reverse supertasks. Consider, in
that light, this quote by Howson (2014, p. 991):

[T]here seems to be no reason in principle why anyone should
not have an evenly-distributed belief over a countably infinite
partition—they might, to take a fanciful example, think that
some occult agency had rigged a lottery to give equal chances to
each number

It would seem that there is no way to spell out that example. There is no
particular method the agency could use to rig the lottery. The rigging would
have to happen in a single, unanalysable act. That indeed makes the agency
occult and the example fanciful. Given that, it does not seem plausible that
it should be considered rational to assign credences to a countable outcome
space in a uniform way.

However, it should be pointed out that the aim of this paper has only been
to provide a certain kind of negative justification for the proposition that
it is irrational to assign uniform credences to a countable outcome space. I
have not considered the many general arguments pro and contra mere finite
additivity; I have just undermined what would otherwise have been some
support for my opponents’ thesis. And even that undermining is potentially

enough that this change facilitates clarity without altering the scenario in any substantial
respect: the results of the tosses with euro coins do not affect any other tosses (neither
whether a dollar or euro coin is to be used, nor the probabilities of tails and heads) just
like the absence of a toss does not affect any other toss (or whether there should be a toss
at any given instant of time).

6In the last case, it would have to be false, contrary to what Zeno thought, that running
a finite but positive distance involves infinitely many constituent actions.
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defeasible: someone just have to come along and describe a mechanism that
works.

6 Acknowledgments

The reverse supertask of section 1 is, essentially, of my invention. I first
presented it in an unpublished paper, from which Timber Kerkvliet learned
about it. In my original version, each god halved the number of balls in
the collection. Timber Kerkvliet found it simpler to work with the ver-
sion in which each god just removes a single ball. I also realized that the
formalism of this paper would be more elegant with that version, and I
therefore adopted it. I have benefitted from discussions about this super-
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