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Abstract The main conclusion is this conditional: If the prin-
ciple of reflection is a valid constraint on rational credences, then
it is not rational to have a uniform credence distribution on a
countable outcome space. The argument is a variation on some
arguments that are already in the literature, but with crucial dif-
ferences. The conditional can be used for either a modus ponens
or a modus tollens; some reasons for thinking that the former is
most reasonable are given.

According to the canonical axioms for probability formulated by Kolmogo-
roff (1933), there can be no such thing as a fair countable lottery, that is, a
lottery on the set of natural numbers in which each number has the same
probability of becoming the winning number. This is because of (an axiom
equivalent to) the principle of countable additivity, which states that the
sum of the probabilities of a finite or countably infinite family of mutually
exclusive events equals the probability of the union over that family. This
principle implies that it cannot be the case that the probability of each
n ∈ N is 0, because that does not add up to 1. In addition, the probabilities
of the possible outcomes cannot be the same positive number, because then,
the total probability would be larger than 1. And if the probabilities are
different, the lottery is not fair.

Therefore, the countable additivity principle implies that there must be a
“bias” in favor of small numbers at the expense of large ones. To be precise,
it has to be the case for each ε > 0 that there is a natural number m such
that the probability of the outcome being larger than m is smaller than ε.
The natural numbers cannot all be treated equally; their position in the
natural number sequence has to matter.

For this reason, countable additivity has been objected to by some, notably
de Finetti (1972). According to him, the correct interpretation of the prob-
ability calculus is a doxastic one. That is, the probability of each event is
a measure of the strength of an epistemic agent’s belief in the proposition
that such an outcome will be realized. Because of his doxastic interpreta-
tion of probability, de Finetti believes that the axioms of probability should
express the formal constraints on a rational agent’s coherent assignment of
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probabilities, and nothing further. Moreover, he thinks that it is perfectly
coherent for such an agent to assign the same probability to each natural
number being the winning number in a lottery on N, if she does not have
specific information indicating that the lottery is not fair. Say, for instance,
that the agent has just been informed that a lottery on the natural numbers
is being performed and is given no information about how. In that case, de
Finetti thinks that it is rationally permissible to distribute the probability
uniformly. And that means assigning 0 to each possible outcome (because
de Finetti does accept the principle of finite additivity, which is sufficient to
rule out a uniform distribution with positive probability for each n).

However, he does not think that distributing the probability uniformly is
obligatory. Rejecting the principle of countable additivity is associated with
a permissive stance regarding rational agents’ assignments of credences to a
system of propositions. (The extreme other end of the spectrum is the re-
strictive position that, given any collection of empirical evidence and any set
of propositions, there is one, and only one, assignment of credences to those
propositions that is consistent with being completely rational.) According
to the permissive stance, you should be “allowed” to assign probability 0 to
each natural number in the described situation, just as you should be al-
lowed to distribute your credences in a manner that is in line with countable
additivity.

The main conclusion of this paper is in the form of a conditional: If the
principle of reflection is a valid constraint on rational credences, then it is
not rational to have a uniform credence distribution on a countable out-
come space. The main argument will be given in section 1. This argument
concerns a specific scenario, but section 2 argues that a general lesson can
nevertheless be learned from it. The antecedent of the conditional will be
made precise in section 4. And the strength of the argument for the condi-
tional is highlighted through comparisons with some similar arguments: one
in section 3 and two in section 5.

I have been surprised by the reactions to the argument in section 1. Several
people have been convinced that it was invalid. I have therefore included an
appendix containing a formal proof of its validity.

The secondary aim of this paper is to map out the dialectical situation to
which the conditional gives rise: i.e., that it can be used either for a modus
ponens or a modus tollens, depending on the strength of the independent
reasons for believing in the antecedent and the negation of the consequent.
Reasons for the former are discussed in section 4, and for the latter, in
section 6. As will become apparent, I think that a modus ponens, leading to
a restrictive stance, is the more reasonable move. However, this conclusion
is not one I can back up with something as strong as a proof.
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1 Main argument

For the time being, assume van Fraassen’s (1984) original reflection principle:
if an agent at an instant of time t0 knows that she will, at a later instant
of time t1, have credence x in a given proposition p, then she ought to have
credence x regarding p at t0.

As a warm-up, consider the following banal scenario. Two fair dice, A and
B, are rolled. Let NA and NB be the stochastic variables for the number
of pips. Before seeing the outcome of either, your credence function P0

satisfies P0(NB > n) = 6−n
6 for each of the six possible values of n. You

then learn that die A shows some specific number of pips, nA, but remain
ignorant about die B’s outcome. Your new knowledge that NA = nA affects
your credence in the proposition that die B shows more pips than die A,
because you now know that NB > NA iff NB > nA; you therefore assign the
two propositions the same probability. Because of your remaining ignorance
and the fact that the dice are stochastically independent,1 your probability
for the latter has not changed. Hence, if P1 is your credence function at
this point in time, then P1(NB > NA) = P1(NB > nA) = P0(NB > nA)
= 6−nA

6 . The reflection principle does not apply in this case, because this
value depends on die A’s outcome. Hence, the principle does not imply
that you ought to have P0(NB > NA) = 6−nA

6 . However, if the result
had been the same for all outcomes of die A, the reflection principle would
have applied. That is what happens when the two dice are replaced with
countable lotteries, and you are replaced with an agent who rejects countable
additivity.

So now consider the following, interesting scenario. Two stochastically in-
dependent lotteries on the natural numbers are conducted. An agent who
rejects countable additivity and only accepts finite additivity assigns, for
each of the lotteries, probability 0 to each possible winning number, prior
to being informed of the actual winning numbers. Let t0 be an instant of
time before the agent is informed of either winning number, but knows what
is described in this paragraph. At t1 the agent is informed of the winning
number, n1, of one of the lotteries. Then at t2 she is informed of the winning
number, n2, of the second lottery, but simultaneously the knowledge of the
first winning number is erased from her memory. She does not have any
certainties at t0 that she doesn’t also have at t1 and t2 (the relevance of this
last stipulation will only become clear in section 4).

Assume that the agent is ideally rational, and accepts both the uniform

1That is, for all X and Y such that NA ∈ X and NB ∈ Y are defined,
P (NB ∈ Y ) = P (NB ∈ Y |NA ∈ X), and similarly for A and B reversed. Since zero-
probability propositions will be on the table, conditional probability must be understood
as primitive (as opposed to defined as a fraction, cf. Hájek 2013), and dictate how an
ideally rational agent must update her credences when receiving new information.
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distributions for the lotteries and the reflection principle. Let P0, P1, and P2

be her credence functions at t0, t1, and t2, respectively. Additionally, let N1

and N2 be the stochastic variables for the two lotteries. At any time ti when
the outcome of the second lottery is not known to the agent, it is the case
for all n ∈ N that Pi(N2 > n) = 1−

∑n
j=0 0 = 1. This holds in particular for

i = 1 and n = n1, so P1(N2 > n1) = 1. In addition, when the outcome of
the first lottery is known to the agent, she knows that N2 > n1 iff N2 > N1,
so she assigns the two propositions the same probability. This also holds
in particular for i = 1, so P1(N2 > N1) = P1(N2 > n1) = 1. By similar
reasoning we get P2(N1 > N2) = 1, which implies P2(N2 > N1) = 0.

As we have been able to deduce this without knowing the winning numbers,
the agent is also capable of doing so at t0. So, from P1(N2 > N1) = 1
and the reflection principle, we can deduce P0(N2 > N1) = 1. Similarly,
P2(N2 > N1) = 0 implies P0(N2 > N1) = 0. Contradiction.

2 From special case to general principle

So far, it has been established that, in one specific type of scenario, the reflec-
tion principle implies the irrationality of having uniform credence functions
for certain stochastic variables with countable outcome spaces. It does not
follow by logic alone that this holds in general. However, I will argue that
the special case nevertheless makes the general principle plausible.

In the field of mathematics, the standard of evidence for a general claim is
that a proof of that claim is given. That is, however, not the standard in
most other fields, including many that make heavy use of mathematics. For
instance, we are in many cases happy to accept a general claim in physics
merely on the basis of knowing it was correct in the specific case of some
observed instances in a laboratory. Pace Hume, I believe that this is rational.

Hence, the fact that the field of formal epistemology makes heavy use of
mathematics is not sufficient to make demands for proofs of general princi-
ples reasonable. And we often don’t make such demands. A pertinent ex-
ample is the principle of finite additivity, which many, including de Finetti
(1972, section 5.9), accept on the basis of Dutch book arguments. Such ar-
guments are, in the first instance, about a much more specific case than the
general principle: namely, those cases in which an epistemic agent assigns
credences to a finite number of mutually exclusive propositions and in which
there is a Dutch bookie present to take advantage of any violations of finite
additivity. One could claim that these arguments merely demonstrate that
it is rationally obligatory to abide by finite additivity in cases where there
actually is a guarantee of financial loss given failure to abide. Yet, we do not
claim that. We implicitly accept that the difference between cases with a
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bookie and cases without is not substantial with respect to finite additivity;
rather, the presence of a bookie merely reveals what is the case generally.

Similarly, I believe that the special case considered in the previous section
reveals the general irrationality of uniform credence functions on countable
outcome spaces. If you are tempted to violate finite additivity, you should
consider how you would react if a Dutch bookie were to materialize, and
apply the counter-factual conclusion to the actual situation; and if you are
tempted to violate countable additivity, you should consider how you would
react if a hypnotist with amnestic powers were to materialize and tell you
that there is a second stochastic variable similar to and independent of the
one you were considering, and apply the counter-factual conclusion to the
actual situation.

Consider the ad hoc positions that one is forced into, if one insists that
countable additivity is only mandatory in the specific kind of epistemic
situation for which a contradiction can be deduced otherwise. Modify the
scenario as follows. The agent learns about the first lottery (but not its
outcome) at t−2, and adopts a uniform distribution for it. At t−1, she learns
about the second lottery, and at t0, learns the rest of what she was previously
stipulated to learn at t0. Must the agent adopt a non-uniform distribution
for the second lottery at t−1? For the agent to decide to do so would be
unmotivated; for rationality to demand it raises the question: why not also
the first one? Or is the agent allowed to adopt a second uniform distribution
at t−1, but then forced to change at least one of the distributions upon
learning the new information at t0, even though that new information is
only about how the outcomes of the lotteries will be learned and forgotten,
and does not pertain to the probabilities of the possible outcomes? An
opponent would be forced to answer one of these questions affirmatively.
That seems just as bad as assigning credence .5 to a proposition A and
credence .6 to ¬A, and only being willing to revise those assignments to
accord with finite additivity if and when it is subsequently revealed that
you are about to be Dutch booked, in a case in which that revelation is not
relevant to the probability of A.

The reasonable position is that the difference between the agent having one
uniform distribution at t−2 and having two at t0 is not substantial, but
merely epistemic: irrationality can be proved (assuming reflection and finite
additivity) for the latter, but not the former. I assume the principle of finite
additivity.2 Therefore, the conclusion is that the reflection principle implies
the irrationality of employing a uniform credence function for a stochastic
variable with a countable outcome space.

2Some deny this principle because they reject the idea that credences can (in ideal
cases) be represented by exact probabilities. See, e.g., Fine (1988, 400).
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3 Comparison

It is useful to compare the argument in section 1 with another that has
been made against the rationality of uniform probability distributions on
countable outcome spaces and is also premised on reflection.3 It concerns
a different scenario. First, a fair coin is tossed to determine which of two
procedures should be followed to pick a random natural number. If the coin
lands heads, the natural number is determined using a method that makes
the probability of N being realized as n equal to 2−n for each n ∈ N. If,
instead, the coin lands tails, a method such that the probability is 0 for
each n is used. In both cases, an agent is subsequently informed of which
natural number was chosen, but not about how it was chosen, i.e., he is not
told about the outcome of the coin toss.

The argument concerned with this scenario goes as follows. On the one
hand, the agent must assign probability 1

2 to Heads and to Tails prior to
the procedure being carried out. On the other hand, afterward, no matter
which outcome n results, he must assign probability 1 to Heads because of
Bayes’ Theorem, and because the outcome being n has positive probability
on the assumption of Heads, but zero probability on the assumption of
Tails. The independence of n implies that this can be realized in advance,
so by reflection, his credence in Heads before the procedure must equal his
credence after. Again we have a contradiction, which—or so the argument
goes—can only be avoided by giving up the assumption that it is rationally
permissible to employ the uniform distribution in the first place.

In the detailed calculation of the prior probability of Heads using reflection
shown below, P and Q are the agent’s credence functions before and after,
respectively; H is the Heads event; T is the Tails event; N is the stochastic
variable for the natural number; and n is the actual outcome for N .

3The argument is taken from Howson (2014, section 8). It is only a slight variation on
an argument from de Finetti (1972, 205–206) (where it is attributed to Lester Dubins),
but the slight variation is exactly that it uses reflection (explicitly), which makes it better
suited for comparison with the above argument. The original argument by de Finetti
is instead concerned with conglomerability, the principle that a probability P (A) is, for
any countable partition {Bi}i∈I of the outcome space, in the interval spanned by the
conditional probabilities {P (A |Bi)}i∈I .
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Howson provides (again, giving due credit to de Finetti) a defense against
this argument. Based on permissiveness, it involves rejecting the equality
between Q(H) and P (H |N = n). He claims that rational agents have
more leeway in deciding how to update their credence functions than is
normally assumed by Bayesians. For example, it is supposed to be rationally
permissible to pick some arbitrary (but “large”) number k and update by
letting Q(H) be equal to P (H |N ≤ k) (which is again equal to 1) if n ≤ k,
and equal to P (H |N > k) (which is again equal to 1

1+2k
) if n > k. That

way, the value of Q(H) is not a given prior to the procedure, so reflection
does not apply.

Insofar as this suggestion has any plausibility, it is due to the fact that
when the agent is informed that the outcome is n, that outcome might,
as far as he knows, be a result of the sub-procedure for determining the
number associated with Tails. In that sense, it might at least seem that
this piece of data is epistemically relevant to the agent’s assessment of the
probability that this sub-procedure had the outcome n.4 Therefore, it might
seem rationally permissible for the agent to assign positive probability to the
possibility that the coin came up tails, and that the second sub-procedure
delivered the outcome n.

With that in mind, let us return to the new scenario. At t1 the agent is
informed of the outcome, n1, of the first lottery. Let us say that it is 7.
This is definitely information only about the first outcome, and not about
the second outcome, as, by assumption, the two lotteries are stochastically
independent. So the agent’s rational credence for the proposition that the
second lottery will have an outcome larger than 7 is not affected by the new
information at t1: we have both P0(N2 > 7) = 1 and P1(N2 > 7) = 1.
Furthermore, since the agent knows that N1 is realized as 7, the latter

4This will perhaps be clearer if we change the scenario slightly. Assume that no matter
the outcome of the coin toss, both of the two sub-procedures are carried out: the stochastic
variable Nh has the 2−n-distribution and the stochastic variable Nt has the 0-distribution.
And N has the outcome of Nh if heads comes up, while it has the outcome of Nt if tails
comes up. Then we can phrase it more clearly: “It might at least seem that this piece of
data is epistemically relevant to the agent’s assessment of the probability that n was the
realization of Nt.”
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equation implies P1(N2 > N1) = 1. To claim that it is rationally permitted
for the agent to assign another value to P1(N2 > N1) would be to claim that
it is rationally permitted for the agent to cease to consider the probability
for N2 to be distributed uniformly on N, on the basis of new evidence that
is irrelevant to N2.

Of course, the argument to the conclusion P1(N2 > N1) = 1 also goes
through for any other value of n1 than 7. Therefore, in this case, reflection
does apply, so that P0(N2 > N1) = 1. Similarly, we get P0(N2 > N1) = 0.
Assuming the reflection principle and the rationality of assigning credences
uniformly to countable outcome spaces, a contradiction ensues. Even if one
accepts de Finetti’s and Howson’s way out of that conclusion for the scenario
they discuss, it cannot be applied here.5

A reviewer has pointed out that there is an avenue open for disagreement
with this conclusion of mine. They rely on the premise (which I am happy
to grant) that for any fixed amount of time between t0 and t1, there is an
upper bound, k, on the number that can be communicated to the agent as
the outcome of the first lottery. Hence, the argument goes, if the outcome
exceeds k, the agent is only able to update on N1 > k and not on N1 = n1.
Then, something close to Howson’s instructions for how to update would be
justified, without the need for permissive arbitrariness: the agent could be
updating on her total new evidence.

I believe that the reviewer’s objection succeeds if t1 and t2 are fixed instants
of time. However, the solution is simply to not consider them as such.
Instead, let t1 be whenever the first winning number has been communicated
to the agent, however long that takes, and similarly for t2. Kierland, Monton,
and Ruhmkorff (2008) have investigated whether it matters for reflection
whether the instant of time that is reflected on is known to the agent at the
time of reflection, and reached the conclusion needed for this solution: it
does not.6

5A popular idea for how to reform probability theory is to allow events to have infinites-
imal non-zero probabilities: see Benci, Horsten, and Wenmackers (2018) and references
therein. Countable fair lotteries are an important part of the motivation for this move,
as infinitesimals allow for the reconciliation of the countable additivity principle with uni-
formity. However, it does little to address the problem raised here. Since each event
of the form {0, . . . , n} in a fair countable lottery is assigned an infinitesimal probability,
the above argument goes through if we replace the exact-value version of the reflection
principle with this interval version: if an agent at an instant of time t0 knows that she
will, at a later instant of time t1, assign credence belonging to the interval I to a given
proposition p, then she ought to have a credence that belongs to I regarding p at t0 (and
similarly for the other reflection principles to be discussed in section 4).

6That instant of time must be specified in such a way that the future self will know
when it has arrived (Schervish, Seidenfeld, and Kadane 2004). Otherwise, the current self
may be able to infer extra information from the condition about the future probability
assignment in such a way that it is in a better position to assign probabilities than the
future self, and should therefore not defer to it. However, t1 and t2 clearly are so specified.
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4 Reflection

There is a problem with both the argument in section 1 and the argument
in section 3 that has to be rectified. Namely, they are based on a false
premise: van Fraassen’s reflection principle is not a valid principle of ideal
rationality. The literature contains several counter-examples, of which I will
give just one here, which is probably the simplest: Talbott’s (1991) scenario
involving a person who is planning on getting drunk. At the beginning of
the evening, when she is still sober, she knows that she will later be drunk
and not capable of driving safely. She also knows that when she gets drunk
she will be convinced that she can drive safely. It would be irrational for her
to reflect on that knowledge of her future credence and adopt the belief, at
the beginning of the evening, that it will be safe for her to drive when she
is drunk.

Other counter-examples to van Fraassen’s reflection principle involving an-
ticipated irrationality can be found in Talbott (1991) and Christensen (1991).
Other types of counter-examples involve anticipated memory loss (also Tal-
bott), the mere possibility of memory loss (Arntzenius 2003), and—more
controversially—self-locating problems (Elga 2000; Arntzenius 2003).

An element common to all the known counter-examples (and, I believe, all
counter-examples) is that the agent has reason to consider her future cre-
dences untrustworthy. And de Finetti and Howson cannot point to anything
implying that the agent’s credences at t1 and t2 cannot be trusted. By their
lights, they must be considered to be the kind of trustworthy future cre-
dences that one must reflect on to be fully rational—except, of course, that
that would lead to contradiction.

Titelbaum (2012, 133) has formulated a different reflection principle that
is free of the above-mentioned problems and also sufficient for the argu-
ment against fair countable lotteries.7 Titelbaum’s principle says, roughly,
that if an agent at an instant of time t knows that she at some instant
of time t′ rationally assigned or will assign credence x to a given proposi-
tion p, conditional on a proposition that is equivalent to the conjunction
of all those propositions that she is certain of at t but not at t′, then she
ought to have credence x regarding p at t.8 Among other things, this princi-

7In fact, the alternative reflection principle is only one element of a comprehensive
theory that covers the problematic cases mentioned above. (Another significant element
is a generalization of conditionalization.) However, only his reflection principle is relevant
for present purposes.

8The reason that this statement of the principle is rough is that the word “rationally”
has to be defined carefully to yield a precise version of the principle. It should be clear
enough what it means in cases like drunkenness, but it is very complicated to explain
exactly how to interpret it in the case of self-locating problems. Since that kind of problem
is not relevant to the scenarios considered in this paper, I will just refer the interested
reader to Titelbaum’s book.
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ple takes account of the possibility that the agent may forget: a possibility
that van Fraassen seems to have idealized away (as is typical in standard
Bayesianism). She does not have to defer to a future self, if that future self
lacks information that her present self has. However, she does have to defer
to those of her own future (trustworthy) credences that are conditional on
everything she knows now, but will have forgotten at that future instant of
time.

I believe that Titelbaum’s reflection principle is correct.9 However, if this
principle in any way seems suspicious on account of using conditional prob-
ability in a diachronic rule (like conditionalization, which is rejected by
Howson and de Finetti), the following weaker principle—which is implied
by Titelbaum’s—will also suffice for the argument: if an agent at an instant
of time t knows that she at some instant of time t′ rationally assigned or
will assign credence x to a given proposition p, and she knows that at t′ she
was or will be certain of all those propositions she is certain of at t, then
she ought to have credence x regarding p at t.10

Because we stipulated that the agent does not have any certainties at t0 that
she doesn’t also have at t1 and t2,

11 this weak reflection principle is sufficient
to validate the inferences from P1(N2 > N1) = 1 to P0(N2 > N1) = 1 and
from P2(N2 > N1) = 0 to P0(N2 > N1) = 0. That is, even though memory
loss plays a role both in the argument in section 1 and in several counter-
examples to van Fraassen’s reflection principle, my argument goes through
under a reflection principle that takes these counter-examples into account.

It seems reasonable to me to accept this weak principle on account of its
intuitive plausibility, i.e., without basing it on anything more fundamental,
as long as no clear counter-example has been found. And no clear counter-
example has been found. Of course, one might claim that I have just found
such a counter-example. If so, it is hardly a clear counter-example, but
since I lack a knockdown argument against that claim, I will refrain from
concluding categorically that it is irrational to have a uniform credence
distribution on a countable outcome space.

9Huisman (2015) argues for saving the permissiveness of mere finite additivity by
proposing a weakened form of reflection which does not limit a rational agent’s current
credence for a proposition to what she knows that credence will be updated to in the
future (when she does know that), but only to an interval that is determined by what she
would update it to in all of a range of scenarios with counter-factual limitations on the
knowledge she is going to obtain. I do not see any motivation for this proposed weakening
of reflection, which amounts to ignoring the actual knowledge, except as an ad-hoc means
to avoid countable additivity.

10It seems reasonable to suppose that it is something like this amended principle that
Howson (2014, 1006) refers to when he writes “So amended, the principle itself seems
sound enough: indeed it would, I believe, be virtually self-contradictory to deny it”.

11Note that being a certainty cannot be identified with having credence 1, because for
each n ∈ N, we have P0(N1 6= n) = 1, even though it is not certain that N1 6= n.
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Let me consider the following objection: there are cases where two experts
disagree about the credence for a given proposition, so I cannot defer to
both of them, and hence I should not. The case of the two lotteries is
just like that; that the “experts” are future versions of the same agent is
inessential. Hence, the scenario tells us nothing about countable additivity,
but is rather one among many counter-examples to reflection and similar
principles of deference.

My answer is that, while there are indeed cases of disagreeing experts, I
very much doubt that there are any that are both relevantly similar and
uncontroversially rationally permitted. First, the reason the two experts
disagree might be that one or both have employed different priors than me,
and if my priors are rationally permissible, I might not be rationally required
to defer to them. In our scenario, the credences of the three time-slices of
the agent, which I shall call agent0, agent1, and agent2, are based on the
same priors, and the reflection principle only applies in such cases,12 so such
an expert scenario would not be a counter-example. Second, the experts
may disagree in another scenario in which zero-probability events play an
essential role too. Then, we would probably be in the same controversial
territory that we are currently occupying, and therefore, that scenario would
have little dialectical force. Third, the experts’ credences for the proposition
in question may not be common knowledge, as they are in our case: agent1
knows that agent2 knows that agent1 knows that P2(N2 > N1) = 0, for
instance. There are no other cases: if priors are shared, and all relevant
ones are positive, and the posteriors are common knowledge, then ideal
rationality implies that those posteriors are equal. This follows from a result
by Aumann (1976).

In our scenario, agent1 assigns probability 1 to N2 > N1 because she knows
N1 = n1. Agent1 also knows that agent2 assigns probability 0 to N2 > N1

because agent2 knows what the outcome of the second lottery is. However,
agent1 assigns probability 1 to the reason for P2(N2 > N1) = 0 being that
agent2 knows the winning number for the second lottery and that this win-
ning number is in fact larger than the winning number for the first lottery.
Agent1’s knowledge that P2(N2 > N1) = 0 does not, therefore, give agent1
reason to reevaluate P1(N2 > N1); and vice versa for agent2. This failure
of agent1 and agent2 to reach a consensus even though their credences are
common knowledge is, in my view, an anomaly that is indicative of the ac-
ceptance of merely finite additivity being misplaced, and not something that
is similar in relevant respects to a scenario in which everything is in order.

12This is part of the rationality prerequisite for reflection mentioned above; see Titel-
baum (2012, 134).
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5 More comparisons

Arguments similar to the one I made in section 1 have been considered and
rejected by Norton and by de Finetti himself. I will explain why mine is
better. Norton (2018, subsection 3.2) writes:

Consider two [fair] lotteries [on N]. For any outcome on the first,
there are only finitely many smaller numbered outcomes on the
second, but infinitely many larger numbered outcomes. There-
fore the outcome of the second has, with overwhelming proba-
bility, the greater number. The same inference, starting with
the second lottery machine, concludes that, with overwhelming
probability, the outcome on the first has the greater number.
Both cannot be true. Therefore an infinite lottery machine is
impossible.

The fallacy of this argument lies in set theory, prior to con-
sideration of probabilities. Consider all pairs of natural numbers
〈m,n〉. For any particular value of m, say M , there are infinitely
many n > M but only finitely many n < M . It does not follow
from this that, for all pairs 〈m,n〉, there are infinitely many pairs
with n > m and only finitely many with n < m. The inference
from “for any particular value of m” to “for all pairs 〈m,n〉” re-
quires us to form the union of the sets {n : n < M}. While this
set is finite for any particular M , the union for all M is infinite.

It is, of course, correct that the inference to a contradiction cannot be carried
through using set theory alone. You need something else that can justify
the move from the particular P (n > M) = 1 for each value of M to the
general P (n > m) = 1. This is not made available by the simple description
of the scenario provided by Norton. That something else is available in my
scenario, in the form of an epistemic event: when the agent learns that m
is realized by M , the two propositions P (n > M) = 1 and P (n > m) = 1
(using Norton’s notation) become equivalent for her.

Here is the relevant quote by de Finetti (1972, 98–99):13

The alleged paradox [. . . ] can be stated in the following way: let
X and Y be two integers chosen at random [. . . ] and indepen-
dently [. . . ]. Then [. . . ] given any value x of X, the probability
that Y ≤ x is zero; analogously, given any y the probability that
X ≤ y is zero. Thus the probabilities of the events Y ≤ X and
X ≤ Y are both zero but this is absurd since the two events are
complementary.

13The argument was first made in de Finetti (1930).
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However, it is clear (notice the substitution of x and y with
X and Y in the last sentence!) that in the argument it has been
implicitly assumed that if the event Y ≤ X has zero probability
conditional on each of the possible and incompatible hypotheses
X = 1, X = 2, X = 3, . . . X = x, . . ., its (unconditional) proba-
bility must also be zero. This property certainly holds for a finite
number of hypotheses, but in order to extend it to the infinite
case it is necessary and sufficient to assume precisely complete
additivity.

While, as de Finetti points out, this argument is also problematic, it is not
problematic in the same way as Norton’s, which is entirely fallacious and
thus establishes nothing. In contrast, de Finetti’s argument is, in effect, a
sound one for the conditional that has conglomerability as its antecedent
and countable additivity as its consequent. However, de Finetti denies both
the antecedent and the consequent, and the conditional is dialectically im-
potent, because it is hard to see why anyone should believe the antecedent
if they do not already believe the consequent. Similarly, I presume that de
Finetti would have accepted the conditional that I have established, where
reflection plays the role of antecedent, while denying its antecedent and
consequent. This antecedent, on the other hand, is dialectically interesting.
This is because reflection can be tested independently against our intuitions
in a wide range of scenarios that are much more down-to-earth and realistic
than infinite lotteries, and for which our intuitions are therefore more reli-
able (see the references in the beginning of section 4). And—at the risk of
repeating myself—those tests indicate that the reflection principle can be
trusted whenever the credences that are potentially subject to reflection can
be trusted.

A possible move is to accept reflection for finite outcome spaces, and deny
it for infinite ones. That seems hopelessly ad hoc to me: the strength of
the intuition in favor of reflection is not affected by the the size of the
outcome space. If I am to be moved, I would need a non-question-begging
counterexample to reflection.

6 Permissiveness

As pointed out in the introduction, rejecting countable additivity gives rise
to a permissive stance. So does rejecting the weak reflection principle. The
latter just happens to be a diachronic principle while the former is a syn-
chronic one; but rejection of either reduces the doxastic obligations on ra-
tional agents. The conclusion we can draw from sections 1 and 2 is that
the moderate position, i.e., accepting the weak reflection principle while
rejecting countable additivity, is unstable: one has to choose between the
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restrictive stance of accepting both and the extremely permissive stance of
rejecting both.

I have given reasons for accepting reflection. But what about de Finetti’s
most basic intuition for the permissive stance, explained in the introduc-
tion of this paper, that if an agent has very little information, it might
seem rational for her not to be “biased” in such a way that the position of
the possible outcomes in the natural number sequence matters? Well, that
intuition leads to inconsistencies by itself, if taken to its full conclusion.

To be completely unbiased concerning the natural numbers, it is not enough
to have a credence function P such that for every pair of subsets S1 and S2
of N, both of cardinality 1, it is the case that P (S1) = P (S2)—which is,
using a non-standard formulation, what de Finetti wants to allow. This
requirement has to be generalized: for every pair of subsets S1 and S2 of N
of the same cardinality, it must be the case that P (S1) = P (S2). For, if
the positions of the elements of S1 and S2 in the natural number sequence
are disregarded, then there is nothing left to discriminate between the two
sets probabilistically, other than the number of elements they contain. And
it is easy to see that this requirement is contradictory: using it and finite
additivity, we get both

P ({3n+ 1 |n ∈ N}) = P ({3n+ 2 |n ∈ N}) = P ({3n+ 3 |n ∈ N}) = 1/3

and
P ({3n+ 1 |n ∈ N}) = P (N \ {3n+ 1 |n ∈ N}) = 1/2.

Bartha (2004) attempts to avoid this contradiction by claiming that, in
addition to cardinality, the positions and relative distances of the elements
of the set have to be taken into account; and that therefore {3n+ 1 |n ∈ N}
and N \ {3n + 1 |n ∈ N}, because of their different structures, do not have
to have the same probability. But that is exactly what de Finetti’s intuition
opposes: namely, that the positions of the natural numbers have to matter.

Bartha defends his position using an analogy argument. In the case of a
uniform distribution on [0, 1], the probabilities of any pair of finite subsets is
the same (namely 0), while the probabilities of a pair of subsets of cardinality
2ℵ0 may be different (e.g., P ([0, 1]) = 1 and P ([0, 12 ]) = 1

2). He therefore
thinks that we should accept something similar in the case of the natural
numbers. I will grant that this argument has some force, but—as is the case
with most analogy arguments—it is limited. The outcome spaces N and [0, 1]
are very different. The idea that some sort of idealized dart-throwing at a
one-meter-long target should be able to result in a uniform distribution on
that target has no analogue in the case of N, with its lack of an upper bound
on the distances between elements. That two sets with the same cardinality
can have different probabilities in a distribution that is considered uniform
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in the case of an outcome space that is a bounded continuum does not
imply, in a straightforward way, that the same should hold in the case of an
unbounded, discrete outcome space.

My point is this. Prima facie it may seem that de Finetti’s principle that a
sufficiently ignorant agent should be allowed, without being expelled from
the good society of rational people, to be “unbiased” about the elements
of N, is one of those basic and almost-obvious truths that one should stick
to, almost come-what-may. And if one feels that way, one might be inclined
to stick to one’s principle, when it is revealed that it conflicts with reflection.
But what we have just seen is that the positions and relative distances of
the elements of N have to play a role in some contexts—Bartha cannot
deny that.14 It is not possible to treat all possible outcomes completely on
a par. So the simple intuition must at best be replaced with some more
muddy and complicated principle, and muddy and complicated principles
are bad candidates for fundamental axioms that can plausibly be claimed to
require no further justification. Moreover, if it is acknowledged that further
arguments are needed, then are there any that are better than analogy
arguments?

The case for (mere) finite additivity seems weak, while the case for reflec-
tion seems much stronger. As mentioned earlier, the latter can be—and
has been—tested against scenarios in which our intuitions are much more
reliable. So, when pitted against each other in a fight, as this paper argues
that they are, finite additivity appears to be on the losing side. Or, at least,
that is what I would gamble on, if I must.

Appendix

This Appendix contains a longer and more precise version of the argument
in section 1.

The first thing to make more precise is the character of the functions. P0

is stipulated to be a probability function on N2. Making the dependence
of P1 and P2 on the outcomes of the lotteries explicit, these are not simply
probability functions on N2, but rather functions from N2 into the space of
probability functions on N2. For n,m ∈ N, s ⊆ N2, and i = 1, 2, Pi(n,m)(s)
represents the agent’s credence at ti for the proposition that the ordered
pair of outcomes belongs to s, if the ordered pair of outcomes is actually
(n,m).

In continuity with the notation used above, I will abbreviate “{(N1, N2) |φ}”
14The question of how far uniformity can be taken before this problem kicks in is ex-

plored by Kerkvliet and Meester (2016) and (using infinitesmal probabilities) Wenmackers
and Horsten (2013).
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as just “φ”. So, for instance, N2 < l is the set {(N1, N2) |N2 < l}, i.e.
N× {0, . . . , l − 1}.

Premises

In the statements of the premises, all free variables are implicitly bound by
initial universal quantifiers, restricted to

• N for the variables “n”, “m”, “k”, and “l”,

• subsets of N2 for “s” and “t”,

• [0, 1] for “x”,

• {1, 2} for “i”, and

• the set of finite sets of mutually disjoint subsets of N2 for “S”.

The first four premises are uncontroversial principles of probability, includ-
ing finite additivity:

1. Pi(n,m)(
⋃
S) =

∑
s∈S Pi(n,m)(s)

2. Pi(n,m)(N2 \ s) = 1− Pi(n,m)(s)

3. Pi(n,m)(s) = 1→ Pi(n,m)(t) = Pi(n,m)(s ∩ t)

4. P0(N2) = 1

The next group of premises encode the scenario stipulations concerning the
events at t1 and t2:

5. P1(n,m)(N1 = n) = 1

6. P1(n,m)(N2 = l) = 0

7. P2(n,m)(N1 = k) = 0

8. P2(n,m)(N2 = m) = 1

The final premise comprises the relevant instances of the reflection principle:

9. P0({(n,m) |Pi(n,m)(s) = x}) = 1→ P0(s) = x
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In fact, this premise is a little more than the reflection principle. The premise
does not say that if the t0 credence of the ti credence of s being x is 1, then
the t0 credence of s is x; but rather, that if the t0 credence of an event that
leads to the ti credence of s being x is 1, then the t0 credence of s is x. This
is a strengthening of reflection that is justified when the agent knows which
events will lead to which credences. Thus, this formal premise combines
what is informally more easily thought of as several premises: the weak
reflection principle, the ideal rationality of the agent, and that the agent
knows at t0 what will happen at t1 and t2 (except for the specific winning
numbers).

Deduction

From 1 and 6:

10. ∀n,m ∈ N : P1(n,m)(N2 ≤ n) =
∑n

i=0 P1(n,m)(N2 = i) = 0

From 2 and 10:

11. ∀n,m ∈ N : P1(n,m)(N2 > n) = 1− P1(n,m)(N2 ≤ n) = 1

From 3:

12. ∀n,m ∈ N : P1(n,m)(N1 = n) = 1

→ P1(n,m)(N2 > N1) = P1(n,m)(N2 > N1 ∩ N1 = n)

Because for all n ∈ N, N2 > N1 ∩ N1 = n is the same set asN2 > n ∩ N1 = n:

13. ∀n,m ∈ N : P1(n,m)(N2 > N1 ∩ N1 = n)

= P1(n,m)(N2 > n ∩ N1 = n)

From 3:

14. ∀n,m ∈ N : P1(n,m)(N1 = n) = 1

→ P1(n,m)(N2 > n ∩ N1 = n) = P1(n,m)(N2 > n)

From 12, 13, and 14:

15. ∀n,m ∈ N : P1(n,m)(N1 = n) = 1

→ P1(n,m)(N2 > N1) = P1(n,m)(N2 > n)

From 5, 11, and 15:
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16. ∀n,m ∈ N : P1(n,m)(N2 > N1) = 1

From 16:

17. {(n,m) |P1(n,m)(N2 > N1) = 1} = N2

From 4 and 17:

18. P0({(n,m) |P1(n,m)(N2 > N1) = 1}) = 1

From 9 and 18:

19. P0(N2 > N1) = 1

By analogous reasoning, using 7 and 8 instead of 5 and 6:

20. P0(N2 > N1) = 0

From 19 and 20:

21. Contradiction
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