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Abstract: According to L.E.J. Brouwer, there is room for non-
definable real numbers within the intuitionistic ontology of men-
tal constructions. That room is allegedly provided by freely pro-
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There seem to be two options. Either you believe that mathematics is re-
stricted to potential infinity. As the progression of natural numbers can be
considered a mere potential infinity, that does not prevent you from hav-
ing all the natural numbers available. Similarly, you can justify the use of
rational numbers. You are also plausibly entitled to definable irrational num-
bers, as the sequence of rational numbers in a Cauchy sequence that can be
defined can also be understood as merely potentially infinite, because the
definition itself plays a constitutive rôle. However, you would have to banish
non-definable real numbers from your stock of mathematical entities.1

Or you think that actual infinity is acceptable. Then you have the “full”
set of real numbers at your disposal, including those that are constituted by
actually infinite sequences of rational numbers. The price is that you are
now committed to a much more extensive ontology.2

L.E.J. Brouwer thinks that with intuitionism you can have it both ways: that
there is room for non-definable reals in an austere ontology of only potential
infinity. Specifically, he claims that non-definable real numbers are available
in the form of choice sequences that are constructed in a potentially infinite
process that is random, in the sense that the creator refrains from following
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1This position is occupied by, among others, Bishop and Bridges (1985), Weyl (1918),
and Markov (1954), with some variation on what is considered an acceptable definition.
If the modern concept of real numbers had been developed in his time, Aristotle would
presumably also belong here.

2This is the mainstream position today. If the modern concept of real numbers had
been developed in his time, Plato would presumably also belong here.
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a law for such construction. The purpose of this paper is to argue that he is
mistaken.3

I will start out with a general (and uncritical) introduction to intutionism.4 I
feel that this is necessary because intuitionism is too often thought of as the
result of applying a non-standard logic, when instead it is based on meta-
physical considerations; and those metaphysical considerations (somewhat
confused, as I will subsequently argue that they are) are more important to
the issue of arbitrary real numbers than matters of logic are. This intro-
duction, in section 1 below, will be redundant for the Brouwer expert, but
should be useful for the reader who primarily knows Brouwer’s ideas through
logic-centered work on intuitionism (or not at all). Section 2 lays out the
specific target claim of this paper, which is then discussed in sections 3, 4,
and 5.

1 General introduction

Brouwer, the father of intuitionism, aimed to create a mathematics that
avoids abstract objects and actual infinity. He did so by identifying the
subject matter of mathematics with the potential infinity of certain mental
constructions of a creating subject. Inspired by Kant (1787), Brouwer onto-
logically located mathematics in the human intuition of time.5 According to
him, the basic building block of mathematical constructions is the so-called
empty two-ity, which is the result of fixing on a moment of time, noticing
it giving way to another such moment, and abstracting away the contingent
and specific elements of the experiences that the subject happens to have
at those two. The construction of the empty two-ity gives us the numbers
1 and 2. That can be iterated by dividing the now of the initial two-ity’s
past-now distinction into a “new past” moment and a “new now” moment,
resulting in an object (old past-new past)-new now that can play the rôle
of the number three, and so on. According to Brouwer, the mathematical
universe is limited to what can be constructed in this way.6

Brouwer can account for the meaning and truth of “2 + 2 = 4” as follows:
I have constructed a two-ity, then another two-ity and then a four-ity, and
succeeded in constructing a bijection between the disjoint union of the two
former and the latter. That account is in terms of actual constructions.
To account for the necessity of the truth of “2 + 2 = 4”, and for the truth
of “10 · 10100 = 10101” we have to go beyond actual constructions; but we
can do that while staying within the confines of intuitionism. While I may
make a mistake in an attempt to construct a truth-maker for “2 + 2 = 4”, a
mental construction can come with an intention to execute the construction

3Fictionalism (Field 1980, Balaguer 1996) is another attempt at combining a parsimo-
nious ontology with acceptance of undefinable real numbers (and indeed everything else
in classical mathematics).

4See van Atten (2004) and van Stigt (1990) for more thorough introductions.
5See page 8 and chapter 2 of Brouwer (1907).
6“In this way” is very vague. While some of the details will be fleshed out below, the

phrase also reflects a vagueness and lack of detail in Brouwer’s own papers. See Kuiper
(2004) for an attempt at filling in some of the details Brouwer omitted.

2



in a certain way, and this intentionality implies that there is a normative
aspect to constructions. This, in turn, allows us to say that any correct (i.e.,
intention-fulfilling) construction of the sum of two and two would necessarily
result in four. And though I will never actually construct the mental objects
that the sentence “10 · 10100 = 10101” is properly about using the intuition of
time, reflection on the intuition of time shows the subject that the future is
in principle (in some sense of “in principle”) open-ended, and that the series
of natural numbers could therefore in principle be extended indefinitely. It is
therefore clear that even the enormous numbers referred to in this sentence
are potentially constructable, and that suffices (because we can prove in
advance that if they were constructed correctly, then they would relate in
the way indicated by the sentence). Thus, Brouwer’s mentalism provides
support for a mathematics of potential infinity. But he rejects actual infinity.

According to Brouwer (1908), the mentalistic ontology also necessitates a
rejection of classical logic. A simple illustration can be given using the
classical proof that there exist irrational numbers a and b such that ab is
rational. It is a proof by cases: either

√
2
√
2 is rational or irrational. If it is

rational, let both a and b be equal to the irrational number
√
2, and then ab

is rational. If it is irrational, let a be equal to
√
2
√
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ab =
(√

2

√
2
)√2

=
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2·
√
2
=
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2
= 2,

i.e., again a rational number. This proof is non-constructive, as it does not
inform us which irrational number a has the sought-after property. And for
Brouwer, that is an epistemic point with ontological implications: only if
we have constructed an irrational number a and constructed its having the
property of being equal to a rational number when raised to the power of an
irrational number b, is there such a number; for there is nowhere else in all
of Being to locate it than in our constructions.

The culprit in the classical proof is the very first step: the assumption that√
2
√
2 is either rational or irrational in the absence of a construction to

support one of the disjuncts. Thus, tertium non datur is not in general a
valid principle.

For Brouwer (1907, chapter 3; 1947; 1952), logic does not have the central
position in mathematics that it has for the classical mathematician. Rather,
logical laws are merely highly general descriptions of the interrelations of
constructions—or, indeed, highly general descriptions of the language that
can, imperfectly, be used to convey an essentially language-less construction
from one person to another. An inference rule being valid means that, when-
ever constructions corresponding to its premises are at hand, a construction
corresponding to its conclusion can be effected.7

Brouwer’s non-standard ontology in general, and his revision of logic in par-
ticular, mean that a broad range of important classical theorems fail intu-
itionistically, including the theorem that every real number is positive or
non-positive, ∀x∈R(x > 0∨x ≤ 0). Brouwer gives examples of real numbers

7For more on this, see Hansen (2016).
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for which we cannot assert that it is one or the other. A prerequisite for those
examples is the intuitionistic notion of real numbers. With the exception of
the strict finitist, all parties to the debate agree that a real number is an
infinitary object. Either it is an ordered pair of actually infinite sets of ratio-
nal numbers (Dedekind 1872), or an actually infinite, converging sequence
of rational numbers (Cauchy 1821; Heine 1872)—or, if you ask Brouwer, a
potentially infinite, converging sequence of rational numbers.8 That is, a real
number is the process whereby a creating subject constructs more and more
elements of a so-called choice sequence. The elements can be freely chosen
by the subject, or he can decide to follow a rule when choosing elements.
In the latter case, it must be possible to calculate each element in a finite
amount of time for which an upper bound is known in advance.

The specific details of the definition of “real number” can be filled out in
several different, intuitionistically acceptable ways. For the purpose of this
paper, let us define a real number as a choice sequence 〈q1, q2, q3, . . .〉 of
rational numbers, such that |qn − qn+1| ≤ 2−n for all natural numbers n,
and such that each qn is of the form m · 2−n−1 for some integer m.

A real number that, at present, can neither be asserted to be positive nor to
be non-positive can be constructed using a so-called fleeing property, defined
by Brouwer (1955, 114) as follows.

A property f having a sense for natural numbers is called a fleeing
property if it satisfies the following three requirements:

(i) For each natural number n, it can be decided whether or
not n possesses the property f ;

(ii) no way is known to calculate a natural number possessing
f ;

(iii) the assumption that at least one natural number possesses
f , is not known to be contradictory.

An example of a fleeing property P is, for a given finite sequence of digits not
yet found in the decimal expansion of π and not yet proved not to occur in it,
that that sequence occurs beginning at the n’th decimal. Then, let the real
number a be defined as the choice sequence that begins with the elements
1/4,−1/8, 1/16, . . . , (−1/2)n+1, . . ., and continues like that as long as no n
has had the property P , and stays constant at (−1/2)n+1 from the first n
that has the property P onwards (if such an n is found). Then, at any given
point in the construction where the choice sequence is still “oscillating”, the
creating subject is not in possession of a truth maker for either the sentence
“a > 0” or the sentence “a ≤ 0”.

This invalidity of a classical theorem leads to the validity of a non-classical
one: namely, that all functions from R to R are continuous (Brouwer 1924).

8In the second and third cases it should really be “an actually/potentially infinite equiv-
alence class of actually/potentially infinite, converging sequences of rational numbers”. In
the interest of avoiding cumbersome formulations, I will pretend that a sequence is a real
number, rather than an element of one.
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For instance, this is an illegitimate definition of such a function,

f(x) =

{
0 if x ≤ 0
1 if x > 0,

because it would have to map a to a choice sequence f(a). The first two
elements of f(a) could both be equal to 1

2 , for that is consistent with subse-
quent elements of f(a) converging to 0, and also consistent with subsequent
elements of f(a) converging to 1. However, as we cannot make it the case
that a > 0 or a ≤ 0 via a finite calculation with an upper bound on time
consumption that is known in advance, there is no way, at present, to choose
a third element of f(a), for any possible choice would either be too far away
from 0 or too far away from 1 to allow the sequence to converge to that
value if a subsequently attains a specific value (i.e., if a natural number is
determined to have the property P , or it is determined that it is impossible
for any natural number to have it). Thus f is not a total function on the
real numbers, but only a partial function defined for those real numbers that
are either positive or non-positive.

According to Brouwer, the space of real numbers is not limited to those that
are governed by a rule, as a is. By allowing for sequences that are not,
the creating subject is supposed to be capable of producing additional real
numbers: non-definable real numbers that can saturate the continuum.

2 Brouwer on freely proceeding choice sequences

The aspect of Brouwer’s intuitionism that distinguishes it the most from
other types of constructivism is its use of choice sequences: sequences created
in time via successive choices of new elements by a creating subject (Brouwer
1952, 142). At any point in time, only a finite initial segment has been
constructed. The sequence is, therefore, never finished, but always in a state
of expansion. According to Brouwer, basing mathematics on such objects
eliminates the need to assume that something actually infinite exists.

The creating subject can choose to pick the elements according to an algo-
rithm: for example, one that selects rational numbers that are increasingly
better approximations of π. But that is not required. The subject can also
create a sequence in which each choice of an element is made at random.
The subject may grant himself the freedom to allow each element to be
any member of some species (i.e., class), for instance, the species of natural
numbers—or may elect, from the beginning of the construction or at any
point during it, to impose restrictions on his own future choices. An impor-
tant example is the decision to create a real number. This amounts to the
subject self-imposing the restriction that each element shall be a rational
number qn of the form m · 2−n−1, satisfying |qn−1 − qn| ≤ 2−(n−1) if n > 1.

Some terminology: a choice sequence governed by an algorithm will be called
“lawlike”, whereas one that is not will be called “freely proceeding”. Although
this seems like a simple distinction, some further clarification is required.
First, the creating subject may impose some restrictions on future choices,
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but without going so far that there is only one option for each element.
Sequences characterized by such restrictions will still be called “freely pro-
ceeding” even though that freedom is partial. Second, a choice sequence
may be governed by, for example, a law that each element is the sum of
the corresponding elements of two freely proceeding sequences. Since this
does not qualify as an algorithm, when everything is taken into account,
such a sequence will be considered freely proceeding. However, complicated
examples like these are not very relevant to my purposes, so the reader is
encouraged to keep a simpler stereotype of arbitrary choice in mind when
freely proceeding sequences are discussed. Third, the categorization of choice
sequences into lawlike and freely proceeding is intended to be exclusive and
exhaustive. That exhaustiveness is achieved when one category is defined
from the other by negation is not obvious when the negation is intuition-
istic. But the categories are meant to be time-relative; i.e., a sequence is
considered freely proceeding at a given instant if the subject has not, at that
instant, decided to follow an algorithm for the rest of the sequence. Thus, at
every instant, each sequence is either lawlike or freely proceeding, although
a freely proceeding sequence may become lawlike later.

According to the platonist, there are among the abstract mathematical ob-
jects real numbers that cannot be defined. While disagreeing with classical
mathematics in many other respects, including whether abstract objects ex-
ist, Brouwer also claimed to have found a place for undefinable real num-
bers in the intuitionist ontology, namely, among the freely proceeding choice
sequences. This thesis is perhaps presented most clearly in the following
passage:

[Intuitionism] also allows infinite sequences of pre-constructed el-
ements which proceed in total or partial freedom. After the aban-
donment of logic one needed this to create all the real numbers
which make up the one-dimensional continuum. If only the pre-
determinate sequences of classical mathematics were available,
one could by introspective construction only generate subspecies
of an ever-unfinished countable species of real numbers which is
doomed always to have the measure zero. To introduce a species
of real numbers which can represent the continuum and there-
fore must have positive measure, classical mathematics had to re-
sort to some logical process, starting from anything-but-evident
axioms[. . . ]. Of course, this so-called complete system of real
numbers has thereby not yet been created; in fact only a logical
system was created, not a mathematical one. On these grounds
we may say that classical analysis, however suitable for technol-
ogy and science, has less mathematical reality than intuitionist
analysis, which succeeds in structuring the positively-measured
continuum from real numbers by admitting the species of freely-
proceeding convergent infinite sequences of rational numbers and
without the need to resort to language or logic. (Brouwer 1951,
451–452)9

9See also Brouwer (1930) and (1952).
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So, Brouwer’s claim is that the free creation of sequences—an arbitrary choice
of an element, followed by another arbitrary choice of an element, ad infini-
tum in potentia—can result in sequences that cannot be defined. Without
relying on abstract objects, but just the human potential for free mental
construction, the intuitionist has access to the “full” set of real numbers. It
is this notion that I want to dispute.

There are two slightly different ways to interpret it. The stronger interpre-
tation is that Brouwer does, in one crucial respect, exactly the same thing as
the classical mathematician, by finding a non-denumerable totality of points
with which to identify the continuum. If so, Brouwer changed his mind in
his late work, because in his early years, before he came up with the idea of
freely proceeding choice sequences, he was of the opinions that the contin-
uum is a primitive notion; that it cannot be constructed out of entities of any
other type; and that, specifically, it cannot be identified with a set of points.
His 1907 description of the continuous and the discrete holds that they are
complementary and equally basic aspects of the Primordial Intuition, and
that points (and numbers) can only be used to analyze a pre-existing con-
tinuum by being the endpoints of the subintervals into which it could be
decomposed.10 One reason Brouwer gives for why a continuum cannot be a
set of points is that the available points are only those that can be identi-
fied with rational numbers or definable real numbers, i.e., lawlike sequences,
implying that there is only a denumerable infinity of them and hence not
enough to exhaust the continuum (Brouwer 1913). However, it is also pos-
sible to interpret the above passage in a weaker way: instead of Brouwer’s
claim being that his reals make up the one-dimensional intuitive continuum,
they just make up the mathematical continuum, i.e., the best possible model
we can have of the intuitive continuum. That would be consistent with this
model falling short of perfection. In this interpretation, Brouwer makes a
more modest claim, namely that the freely proceeding sequences add to the
model something that the lawlike sequences cannot. However, the subtle
differences between these exegetical theses do not affect the critique made
below.

3 Constitution of free choice sequences

Several claims discussed up to this point have been prefaced with “according
to Brouwer”, and for most of those that were not, it was implicit. That ends
now, as I will move into a critical mode to seek a more precise answer to
the question of what a freely proceeding choice sequence is, independently of
Brouwer’s position. I will reach an answer to that question of constitution
at the end of this section, and then, in section 4, argue on the basis of that
answer that Brouwer is mistaken in thinking that freely proceeding choice
sequences can contribute something to the analysis of the continuum that
lawlike sequences cannot.

The project of determining the constitution of freely proceeding choice se-
quences independently of Brouwer’s position is a little dicey, since, as the

10This is, of course, a view originating with Aristotle (1930).
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inventor of the term, Brouwer has some authority over the meaning of “freely
proceeding choice sequence”. So let me clarify the rules of the game. I do
not believe that it would be reasonable to say that, if there are no enti-
ties with all the properties Brouwer claims for freely proceeding sequences,
then there are no freely proceeding sequences. Instead, I think that a ba-
sic characterization can serve as a common ground by picking out a certain
class of entities, whose more sophisticated properties we can then disagree
about. Let the first two paragraphs of the previous section serve as that
basic characterization.

So what exactly constitutes a freely proceeding choice sequence? As is wit-
nessed by the debate on personal identity, questions of constitution can of-
ten be elucidated by first asking related questions of individuation and self-
identity over time. So, if I begin a freely proceeding sequence of natural
numbers now at t1 by making the first element 4, and then now at t2 add 9
to it as its second element, what is it that makes the sequence at t1 identical
to the sequence at t2?

The strongest possible answer, that they are qualitatively identical, can
quickly be ruled out. If they were qualitatively identical they would have
exactly the same properties, and so would already at t1 have 9 as its second
element. So, by the same token, for each n, at t1 it would be a property of
the sequence that there was some specific number that was its nth element.
But then, the sequence would be actually infinite.

Instead of the relevant property being has 9 for its second element, it could be
has, at t2 and later, 9 for its second element. But this makes little difference;
the problem still arises, mutatis mutandis, because there are still an actual
infinity of properties. The fact that some of them are about the future
does not make a meaningful difference. Brouwer cannot accept that what
will happen in the future corresponds, in general, to facts in the present—at
least not when one assumes the possibility of an infinite future with genuinely
random events; yet, Brouwer needs that premise if his choice sequences are
to play the rôle of non-definable real numbers. Hence, he is committed to
anti-realism with respect to the future.

The failure of the foregoing attempt to reach a satisfactory answer teaches
us two things: that we must look for some criterion of numerical identity
instead, and that such a criterion must allow for the sequence to be genuinely
dynamic. This is acknowledged by Brouwer (1955, 114):

In intuitionist mathematics a mathematical entity is not neces-
sarily predeterminate, and may, in its state of free growth, at
some time acquire a property which it did not possess before.

However, commenting on this quote, van Atten (2007, 14) states that

a property such as ‘The number n occurs in the choice sequence x’
is constitutive of the identity of x, but is generally undecidable
and does not satisfy PEM [the principle of the excluded middle].
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If van Atten’s statement were true, the property the number 9 occurs in the
choice sequence α would be constitutive of α, but that would imply that
the t1-incarnation of α is not α. Consequently, diachronic self-identity of a
choice sequence would be impossible. At most, the property the number n
occurs in the choice sequence x being constitutive of the identity of x is the
case only from the point in time at which n is added to the sequence. On
pain of commitment to actual infinity, it cannot be before that. And from
that time onwards, it is decided.11

To avoid actual infinity in both its explicit and implicit forms, do we need to
conclude that the temporal instantiation of our freely proceeding sequence
at t2 is the object

〈4, 9〉?

No, for that is just an ordered tuple, and a choice sequence is not just that.
There is a dynamic aspect to a sequence that is absent from the n-tuple.
This difference is, however, not in the past; the tuple has also been created,
one element added at a time, in a temporal process. In Brouwer’s universe
there are no atemporal mathematical objects; it is just that some of the
temporal objects have been completed. That is the difference between the
tuple and the sequence: the former has found its final form, while the latter
will continue to undergo changes.

This is, however, exactly the kind of claim that we must be cautious about
interpreting. The notion that it “will continue to undergo changes” must not
be understood as an assertion about the actual future of the sequence, for
the actual future does not exist. Given the commitment to anti-realism with
regard to the future, the only content this claim can have is that the creating
subject has an intention to amend the sequence. So, allowing “intention to
expand” to be short for “intention to expand in keeping with the restriction
. . . ” if there is a restriction, the following is a more promising proposal
regarding the constitution of our freely proceeding sequence at t2:

〈4, 9, intention to expand〉

Under that proposal, the present product of an ongoing construction is
merely what has actually been constructed plus the psychological fact that
its creator does not consider it finished. The self-identity of the sequence
being created over time does not rely on any objects in the future, but sim-
ply on the subject choosing, when he adds a new element, to consider the
extended finite sequence a part of the same freely proceeding sequence as
the old one.12

I think this is the correct answer, that is, it is the closest thing we can
find in “the inventory of the world” to what Brouwer envisions a freely pro-
ceeding choice sequence to be. Nevertheless, in the next section it will be

11Van Atten has informed me that he only intended to say that if the third element of
α has been chosen to be 1, then it is known that a choice sequence β, for which something
different from 1 has been chosen as its third element, is not equal to α.

12One might deny that such a decision to identify really has the force to secure actual
identity. But then, we would launch into an even more extensive disagreement with
Brouwer, so I will not argue against it here.
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useful to contrast this answer with another possible answer, namely that the
constitution of our choice sequence at t2 looks like this:

〈4, 9, xN3 , xN4 , xN5 , . . .〉

Here, xNn is supposed to be an indeterminate element that is restricted to N.
That is, at t2 it is true that the third element (e.g.) is a natural number, but
neither true nor false that it is equal to 7. Then, at t3, the choice sequence
may change to

〈4, 9, 7, xN4 , xN5 , xN6 , . . .〉,

as the next choice determinates the third element, which until then was
indeterminate.

I think that 〈4, 9, intention to expand〉 is the correct answer to the question
of the constitution of the choice sequence at t2 because it captures all of
what seem to be the facts of the situation under a parsimonious ontological
analysis thereof. That is, 4 has been chosen as the first element, 9 has been
chosen as the second element, and the creating subject has an intention to
continue expanding the sequence—that’s it! It is a simple situation and
there is no need to invoke the existence of mysterious indeterminate objects
to understand it.13 Hence, let us refer to it as the “simple answer” and to the
alternative answer as the “indeterminacy answer”. However, I will consider
both of these answers to the question of the constitution of freely proceeding
choice sequences in the following section.

4 Evaluation of Brouwer’s claim

Let us evaluate Brouwer’s claim that he has succeeded in supplying an ad-
equate ontology for the “full” system of real numbers that includes non-
definable sequences of rational numbers, in light of the above analysis of the
constitution of a freely proceeding choice sequence.

A preliminary point is that, at any given time, only a finite number of choice
sequences actually exist, because a choice sequence only exists if someone has
created it. Thus, relying only on choice sequences that actually exist will
definitely not suffice; rather R must consist of all possible choice sequences
that satisfy the definition given above. And that is the idea: where the clas-
sical, platonic reals, by virtue of the hierarchical nature of the set-theoretical
universe, must all exist for the set of them to do the same, Brouwer only

13I am overstating the simplicity a bit. If you and I each produce a choice sequence and
we have so far, by chance, picked the same elements in the same order, and we both intend
to expand our respective sequences according to the same restrictions, if any, we have
nevertheless produced different sequences. (The two sequences will be equal (so far), but
not identical. Brouwer also makes this distinction, for example in his definition of “species”
(1952, 142). Troelstra (1977) makes the distinction using the terminology “extensional
identity” and “intensional identity”.) That is not captured by “〈4, 9, intention to expand〉”;
there are also concrete facts about who the creator of the sequence is, when it was started,
etc., that belong in a complete analysis of the constitution of a choice sequence. However,
this complication is irrelevant to the issue at hand, for there is still no need to invoke the
existence of indeterminate objects.
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commits himself to the possibility of constructing each of his reals. They
do not all have to exist prior to them being collected in the species of all
reals. His continuum is the totality of all possible convergent sequences of
rationals. I will not take issue with that. Instead, the question to be asked
is: which choice sequences are really possible?

Assume that a is a platonic real number, i.e., that a is an actually infinite
(and converging) sequence of rational numbers 〈a1, a2, . . .〉; and assume fur-
ther that this sequence is undefinable. If a creating subject attempts to
construct the same real number (“same” in a mathematical, but not an on-
tological sense), it is possible for him to construct 〈a1, intention to expand〉,
after which it is possible to expand it to 〈a1, a2, intention to expand〉, and
then to 〈a1, a2, a3, intention to expand〉. However, at any given instant, only
a finite initial segment of a has been created.

Assuming for the moment that they exist, the actually infinite, undefin-
able sequences do not correspond to possible routes for potentially infinite
choice sequences: “possible” means “can be taken”, and the entire route corre-
sponding to a platonic undefinable sequence can never be taken, only initial
segments of it.

There is a nice metaphor of Posy’s (1976, 98–99) that we can make use of
here. He likens choice sequences to the route of a bus traveling on a forking
highway. The journey of the bus can be seen from different perspectives.
First, there is the perspective of a passenger seated with his back to the
bus driver, so that he can only see the route already traversed. Second,
there is the perspective of the driver, who in addition to the knowledge
possessed by his passenger has an intention regarding where to travel to
from his present position. And third, there is the perspective of a helicopter
pilot looking down on the bus and road system from above, seeing both
the traveled path and the roads ahead. Given the rejection of actual infinity,
there is no helicopter perspective. Actually infinite roads are no less actually
infinite than completed infinite travels. The only legitimate perspectives
are the passenger’s and the driver’s: the former being finitely extensional
and the latter both finitely extensional and finitely intensional. For the
bus driver or the creating subject, there is an infinity of possibilities in the
indefinite future. But one must not conflate an infinity of possibilities with
the possibility of infinity.

If that was a bit too metaphorical, the same point can also be made more
formally, either by a comparison with classical mathematics or by employing
tense logic. Assuming classical mathematics, we can say that freely proceed-
ing choice sequences can only deliver the elements of N<ω (or Q<ω, etc.),
not the elements of Nω (or Qω, etc.). Or with the notation of tense logic, we
can disambiguate what has been conflated by intuitionism. An intuitionist
would say that when a creating subject is constructing a freely proceeding
choice sequence a of rational numbers, then ∀n∈N ∃q∈Q (an = q) is true.
But it is not, in any straightforward way, true of the present. Taking a
cue from Prior (1967), we can see that there must be an implicit “it will
be the case that”-operator somewhere.14 Writing this operator as “F ”, we

14This operator has previously been employed by Niekus (2010) to help clarify aspects
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can disambiguate ∀n∈N ∃q∈Q (an = q) as either ∀n∈NF (∃q∈Q (an = q)) or
F (∀n∈N ∃q∈Q (an = q)).15 Only the former is true, but it is the truth of
the latter that would be required for a to be (or to become) a real number,
as opposed to an always expanding yet always finite sequence.16

When platonism and actual infinity have been rejected, there is no sub specie
aeternitatis perspective under which the process of extending one finite se-
quence to another finite sequence again and again can constitute an omega-
sequence. If only finitely many terms have been added to the sequence at
any given time, if future choices are not predetermined by a law, and if the
future does not exist, there is simply no sense in which the sequence has the
infinitely many terms that would allow it to be an irrational number.

My conclusion is that choice sequences cannot do the same work that the
classical set of real numbers allegedly do. Does that conclusion change if
we replace the simple answer with the indeterminacy answer? I think that,
underlying Brouwer’s claim, there is a vague intuition that it does: each
individual indeterminate element “ranges”, in some “fuzzy” way, over all the
natural numbers (or over the members of some other species)—“it is not true
that xQ4 = 7/8, but it is also not false”—and thus, the infinitely many inde-
terminate elements collectively range over all sequences of natural numbers
in a way that is not restricted by what can be defined.

However, I don’t see how that intuition can be substantiated. It is vague, in
that Brouwer’s official account of mathematical ontology offers no support
for the assumption of there being indeterminate objects. And he is (what
would otherwise count as) quite explicit in his delimitation of the mathemat-
ical realm: only mental constructs are admitted, and indeed, only those that
can be introduced in accordance with one of the two “acts of intuitionism”
(Brouwer 1952). The first act of intuitionism is the purification of math-
ematics, whereby everything that cannot be grounded in the intuition of
time is exorcised. The intuition of time gives the subject the awareness of
a difference in the form of the before-after relation, or in Brouwer’s words,
the so-called Primordial Intuition of the empty two-ity. As explained in sec-
tion 1, this can be translated into the numbers 1 and 2, and the number 3
can be created by holding onto a before-after relation while distinguishing
it collectively from a new “after”. By repetition, the natural numbers can
be constructed, as can any finite object or set of finite objects equipped
with relations and operations, in a manner that is not very different from
the classical approach. The second act of intuitionism is the realization by
the creating subject that he is not limited to already-created mathematical
objects, but free to employ the Primordial Intuition in any way he likes, in
a temporarily unbounded “free unfolding of the empty two-ity”. This clears
the space for choice sequences: the subject can set out to make a potentially
infinite sequence consisting of “mathematical entities previously acquired”.

of intuitionism.
15Please note that F here only disambiguates between potential and actual infinities of

identity facts, and not between N being potentially and actually infinite.
16The branch of formal intuitionism in which I think it should have been most obvious

that this conflation happens is in Beth’s semantics (Beth 1964, 444ff.), which is precisely
an attempt at capturing the semantics of sequences of choices.
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The second act is what makes Brouwer’s universe potentially infinite in-
stead of finite. Importantly, however, it is a potential infinity of Primordial
Intuition-created entities. That is, the second act does not sanction a new
kind of basic object that is indeterminate, but only allows for the open-ended
addition and combining of more and more determinate mental constructs.

Even if we set this aside, the points made in the case of the simple an-
swer still stand. First, in the attempt to construct a, the creating sub-
ject can construct 〈a1, xQ2 , x

Q
3 , x

Q
4 , . . .〉, and then determine the value of xQ2

to get 〈a1, a2, xQ3 , x
Q
4 , x

Q
5 , . . .〉, and then determine the value of xQ3 to get

〈a1, a2, a3, xQ4 , x
Q
5 , x

Q
6 , . . .〉, etc.; but he never produces something that is

equivalent to a itself. Second, the tail of indeterminate elements must be
considered a potential infinity, and that precludes the infinitely many ele-
ments from being independent of each other in the way needed for them to
collectively have a range that includes a non-definable sequence. There is
no equivalent of the arbitrary platonic real number a, even if we pretend to
believe that there are such things as indeterminate elements.

Let me consider a possible objection. An intuitionist might bite the bul-
let and accept that no freely proceeding choice sequence is the equivalent
of a, but claim that this is because such sequences are so fundamentally
different from the objects of classical mathematics that there is no direct
correspondence—and then proceed to claim that the freely proceeding choice
sequences nevertheless “fill up the holes” in the continuum that remain after
only the lawlike sequences have been poured into it.

While this defense seems contrary to the spirit of the Brouwer quote in sec-
tion 2, the objector may try to draw some support from Troelstra (1977,
section 2.5), according to whom a freely proceeding choice sequence must
be extensionally different (see footnote 13) from any sequence that is in-
tensionally different. While Troelstra’s claim only ranges over intuitionistic
sequences, it doesn’t seem too much of a stretch to say that if a freely
proceeding choice sequence cannot be extensionally identical to any other
intuitionistic sequence, then it also cannot be extensionally identical to a
platonic sequence (or, at least, it doesn’t seem too much of a stretch if one,
for the sake of argument, is sufficiently eclectically minded to allow for such
comparisons between intuitionistic and platonic objects).

This defense can be overcome by reformulating my critique of freely proceed-
ing sequences. Instead of comparing it to classical sequences, we can instead
point out that a freely proceeding choice sequence cannot add anything to
the constitution of the continuum that cannot already be accomplished by
rational numbers and lawlike choice sequences. Notice that the definition
of “real number” given earlier implies that a real number is a convergent
sequence of rational numbers in which each element restricts all subsequent
elements to an increasingly smaller interval around it, and each such interval
must also be included in the previous intervals. So, in a freely proceeding
choice sequence that is meant to be a real number (i.e., the creating subject
restricts himself to choices that are in conformity with the definition), when
n elements have been chosen, the first n− 1 elements no longer carry any
relevant information. This is because the nth element indicates which inter-
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val future choices are restricted to, and all the earlier intervals include the
nth interval and therefore do not restrict the creating subject any further.
As such, it makes no difference to the theory of real numbers if we identify
the development

t1: 〈1, intention to expand〉,
t2: 〈1, 1/2, intention to expand〉,
t3: 〈1, 1/2, 3/4, intention to expand〉

with

t1: 〈1, intention to change〉,
t2: 〈1/2, intention to change〉,
t3: 〈3/4, intention to change〉,

where “intention to change” may likewise be short for something of the form
“intention to change in keeping with the restriction . . . ”. At any given time,
the mathematical content of a freely proceeding sequence equals an interval
with rational endpoints. The creating subject is just changing his mind
about which interval to use, and each choice is one that could have been made
initially, if it were not for the restriction that each choice must be of the form
m · 2−n−1. The implication of this is that, contrary to Brouwer’s claims,17

freely proceeding choice sequences do nothing that rational numbers cannot
do.

The intuitionist may respond to this claim with another objection, namely
by pointing out that the species of freely proceeding choice sequences of
rational numbers is uncountable, while the species of rational numbers is
not. Thus, the former species has a crucial property in common with the
platonic set of real numbers, suggesting that it does contribute something
to the continuum that the latter species does not. However, a closer look at
the reason for the uncountability reveals that conclusion to be unfounded.

The proof goes as follows. Let f be a function from the species of freely pro-
ceeding sequences of rational numbers to N. According to the intutionistic
notion of function, it must be possible, in the case of each freely proceeding
sequence, to approximate the function value to any desired degree of preci-
sion based on knowledge of some finite number of that sequence’s elements.18

Therefore, since there is a minimum distance between different natural num-
bers (namely 1!), it must be possible to determine the function value exactly
from knowledge of some finite number of elements of the sequence. Let α be
a freely proceeding choice sequence, and n be the number of initial elements
thereof that are needed to determine f(α). There is a possible freely pro-
ceeding choice sequence, β, that is extensionally different from α but shares
the first n elements. Since the function value can be determined solely on the

17See Brouwer (1930) for an overview of what the freely proceeding choice sequences
are supposed to contribute.

18This demand on functions is closely related to what is demanded of real numbers; see
the last few paragraphs of section 1.
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basis of those n elements, f(β) = f(α). Ergo, there is no injective function
from the species of freely proceeding sequences of rational numbers to N,
implying that the former is uncountable.

One point in favor of this objection is that it does not turn on any con-
tentious properties of freely proceeding sequences. That is, the proof also
goes through under my thesis about the constitution of such sequences:
β does not have to be actually infinite; it only needs the n elements that are
shared with α, plus one more to make it differ from α.

The problem with the objection lies elsewhere. To articulate it, we need
to first analyze why the uncountablity of the choice sequences seems, prima
facie, to indicate that they contribute something to the modeling of the
continuum. Let us say that there are two species, S1 and S2, of mathematical
entities that represent points on the continuum. Assuming that S2 does not
contain any “duplicates” in the form of entities that represent the same point,
I would have to concede that S2 contributes something to a mathematical
model of the continuum that S1 does not, if there are more entities in S2
than in S1. And that is what the proof seems to show for the two species it
concerns.

However, I do not think that the intuitionistic proof of the uncountability of
the choice sequences demonstrates that there are more choice sequences than
there are rational numbers in the relevant sense of “more”. Let me explain
why. What has been proved above is that the species of freely proceeding
choice sequences has a higher cardinality than the species of rational num-
bers. “Higher cardinality” is a precise technical term, defined via existence
and lack of bijections. I use “more” in a pre-theoretic sense—it is an intuitive
concept that could potentially be explicated in a satisfying way by a precisely
defined technical term. The relevant question here is whether “higher cardi-
nality” is a good explication of “more”. I would submit that it only is so under
one condition, and that that condition is satisfied in a classical, platonic uni-
verse but not in the intuitionistic one.19 In a platonic universe, whenever s1
and s2 are two sets of the same size (understood pre-theoretically), then, by
the “magic” of combinatorial set creation that requires no human acts, one el-
ement from s2 can be made the function value of an element from s1; another
element from s2 can be made the function value of another element from s1;
etc., “until” all the elements from both are used up. Assuming the existence
of platonic sets, it should be possible to use up both sets without repetition
if and only if s1 and s2 are the same size. That is, under the condition of
the existence of the platonic universe of sets, sameness of size guarantees
the existence of a bijection, but only because no restrictions are placed on
how the function can be put together. Under those circumstances it would
seem that “more” can be understood in terms of higher cardinality. If, on
the other hand, you reject some combinatorial functions, you may reject the
witnesses to sameness of size, but that does not rule out sameness of size.
By demanding that it is always possible to calculate function values to an

19Actually, it is not essential to the argument that the condition would be satisfied in
a platonic universe; it just makes for a nice contrast for the purpose of explaining the
situation in the intuitionistic universe.
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arbitrary degree of approximation in finitely many steps, intuitionism places
severe restrictions on the function concept, an thus, intuitionistic uncount-
ability loses any direct connection with the intuitive concept of size. That
a species is intuitionistically uncountable means that intuitionism does not
recognize any bijection between that species and N, but does not necessarily
mean much more than that.20

Let me drive the point home with a somewhat silly comparison. Let us say
that J.E.L. Qrouwer has invented a new foundation for mathematics, qin-
tuitionism. He accepts the classical rational numbers, and in addition, he
has a collection of numbers he calls “q-numbers”. To the rest of the world,
q-numbers do not seem to be essentially different from rational numbers, but
Qrouwer insists that they are. He claims that the collection of q-numbers
is uncountable and that they can therefore model the continuum much bet-
ter than the rational numbers. But when the claim is investigated by a
non-qintuitionist, she discovers that this is just because Qrouwer has a very
narrow function concept. It only allows q-numbers to be mapped to nat-
ural numbers in such a way that the function value is equal to or smaller
than the denominator in the irreducible fraction that (according to everyone
but Qrouwer) the q-number is equal to. Hence, there is no qintutionisti-
cally acceptable bijection from the collection of q-numbers to N; but that
does not imply anything about the size of the collection. In other words,
the uncountability is due to the qintuitionistic impoverishment of mathe-
matics with respect to the function concept, and not to an enrichment of
mathematics with respect to modeling of the continuum.

Obviously, there are huge differences between freely proceeding choice se-
quences and the q-numbers of this little fairytale, but it does show that one
cannot infer directly from the uncountability-according-to-some-restrictive-
notion-of-function of some collection of mathematical entities to a claim
about that collection being essentially richer than the collection of ratio-
nal numbers. Thus, it would have to be explained how freely proceeding
choice sequences are relevantly different from q-numbers. I would argue that
they are not, because—again—a freely proceeding choice sequence that is
supposed to be a real number in effect amounts to no more than the creating
subject repeatedly changing his mind about which rational number to use.21

At any rate, that would hold true unless and until the subject turned it into
a lawlike sequence, in which case it might cease to be a rational number; but
then it just becomes a definable irrational number.

20Note that none of this is intended to suggest that classical mathematics is the (or a)
correct mathematics. It just means that if classical mathematics is not, then the intuitive
notion of size can probably not be captured by the notion of cardinality. While one may
take that as a reason to prefer classical mathematics, one can also go in the opposite
direction and adopt the anti-Cantorian position that there is no (non-trivial) notion of
infinite size to capture. As a third option, one may consider the notion to be primitive.

21Hence, the assumption behind my concession above is also false: the two freely-
proceeding choice sequences 〈0, 1/2, intention to expand〉 and 〈1, 1/2, intention to expand〉
are “duplicates” in the sense that they represent (at the given point in time) the same point
on the continuum (and there is no atemporal fact about what point they represent).
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5 Final considerations

Our conclusion so far is that we cannot account for the existence of freely
proceeding choice sequences that have all the properties claimed by Brouwer
based on entities that we have independent reasons to believe exist.22 The
final option available to a metaphysisian who finds himself in that kind of
situation is to simply postulate the existence of the kind of entity that he
wants as basic components of the world, irreducible to anything else. That
is not an uncommon move among philosophers of mathematics who support
classical mathematics: they will often take sets to be fundamental entities
that are not constituted by anything physical or mental (or at most, par-
tially constituted by something physical or mental in the case of impure sets
containing such things). Could a Brouwerian do something similar?

If that move is made, then it is no longer clear what the point of intuitionism
is. It is supposed to deliver a mathematics that is free of actual infinity and,
because based on immediate intuitions, epistemically transparent. But if a
freely proceeding choice sequence can constitute an undefinable real number,
then it is actually infinite; and being deemed a fundamental object does not
change that. And if it is a fundamental object that cannot be analyzed
completely in terms of mental acts that we are familiar with, then we do not
have the direct epistemic access to it that Brouwer claims.

If one is willing to make that kind of move, why not just make it in the direc-
tion of classical, platonic mathematics? The price is the same (acceptance of
alien objects to which direct epistemic access is lacking); and the reward is a
stronger and more well-behaved mathematics satisfying tertium non datur.

But if one is not willing to make that move, I conclude that one has to look for
a kind of mathematics that does without undefinable real numbers. Bishop’s
brand of constructivistic mathematics (Bishop and Bridges 1985) may be
suitable for someone who wants to retain Brouwer’s mentalism, Brouwer’s
rejection of actual infinity, and Brouwer’s verificationism, while accepting
this critique of Brouwer’s intuitionism. As mentioned earlier, other options
include Weyl’s (1918) predicativism and the Russian school of constructivism
founded by Markov (1954).

22Van Atten (2007) has reached the opposite conclusion. I find his line of reasoning
to be extremely obscure. If one reads pages 89–93 in isolation, it would seem that van
Atten reaches essentially the same conclusion as I did in section 3 (although couched in
the more flowery language of the phenomenological tradition). But he nevertheless agrees
with Brouwer, based on a vague and unsubstantiated claim that the “inexhaustibility and
non-discreteness of the (intuitive) continuum” somehow fits together with the undecidabil-
ity of the extensional identity of freely proceeding choice sequences of intervals (p. 87).
Apparently, the idea is that the use of nested intervals delivers the non-discreteness, but
the classical real numbers can also be defined in terms of sequences of nested intervals,
and they are discrete (i.e., the continuum is identified with a set of points). The difference
to classical mathematics is supposed to be that the sequence is unfinished. But if it is
unfinished, it has a last term (at any given time) and that last term represents an interval
of positive length with rational endpoints. Further, it seems like the undecidability is sup-
posed to match the inexhaustibility. That is, the (alleged) poverty of facts about whether
pairs of sequences are identical or different is expected to deliver richness of ontological
structure. I do not understand how.
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