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Summary

Historically, two claims have been correlated in the philosophy of mathematics.

The �rst is that the objects of mathematics are what can be constructed in

time by a subject. The second is that a mathematical sentence can be true

only if it is proved (or provable). In this dissertation it is argued that these

claims are independent of one another and that, in fact, the former is correct

and the latter incorrect. This opens up the possibility of a mathematics that

is closer to classical mathematics than intuitionism is, even though it is based

on the austere ontological basis of mental constructions. I lay the groundwork

for such a mathematics.

It is �rst argued that the reasons for being skeptical towards actual in�nity are

so strong that mathematics should not be based on it; it is much more unclear

what is in the �Cantorian paradise� than normally assumed, and supertasks

(including a new one presented here) imply absurd consequences of actual

in�nity. Instead, we will have to make do with mental constructions and

potential in�nity. In that respect this dissertation sides with the intuitionists.

However, my position is far from that of the intuitionists. Among other things,

I argue that choice sequences do not have the properties that Brouwer claims.

They do not in themselves lead to failure of bivalence. And lawless sequences

implicitly depend on actual in�nity and therefore cannot do the job for the

theory of real numbers he assigns them.

I give a novel interpretation of Brouwer in terms of two notions of truth: a

narrow one called �truth-in-content� and a more liberal one called �truth-as-

anticipation�, that are con�ated in the so-called Brouwer-Heyting-Kolmogo-

rov interpretation. On that background it is argued that Brouwer's rejection

of veri�cation-transcendent truth, and acceptance of tertium non datur for

decidable but undecided propositions, is incoherent in its shifting appeal to in

some cases actual and in other cases potential mental constructs.

v



Summary vi

A foundation for a stronger mathematics is provided by allowing an even more

liberal notion, �truth-as-potentiality�, de�ned consistently in terms of poten-

tial mental constructs. Dummetian and Wittgensteinian objections to it are

discussed and rejected. In this way, it is shown that it is possible to avoid the

damaging consequences of intuitionism: the necessity of rejecting large parts

of classical mathematics, that there seems to be overwhelmingly good reasons

for believing are in order as they are. In particular, classical arithmetic is

vindicated on this new basis.

So mentalism does not lead by itself to revision of logic. On the other hand,

I argue that a mentalistic theory of collections can be, and, in so far as we

want it to be comprehensive, has to be, non-well-founded and that this forces

a revision of logic. However, the result is not intuitionistic logic but something

akin to the logic that comes out of Kripke's theory of truth: tertium non datur

fails only in the absence of groundedness, not in the absence of proof and

decidability.

I mix Kripke's theory with elements of Bishop's constructive analysis to build

a non-ver�cationist constructivist theory of classes and real numbers and show

that in this setting Cantor's diagonal proof does not prove that there are more

real numbers than there are natural numbers, but that the real numbers are,

in a certain sense, inde�nitely extensible.

The �akin to� reservation is due to the fact that there are serious problems

with the speci�c formal theory given by Kripke, in particular problems with

expressing universal generalizations about the object language itself and with

a certain family of problematic sentences pointed out by Gupta. Being sym-

pathetic to the general direction of his proposal, I therefore extend and modify

the theory. These technical tweaks I justify through a careful analysis of the

notion of �grounding�; where Kripke only gives it metaphorical motivation,

it is here interpreted as temporal dependency � some mental constructs can

only be e�ected after certain other mental constructs. The notion of truth-as-

potentiality plays a crucial role here. In particular, it can be used to get rid of

the reliance on classical trans�nite ordinals that Kripke uses in his formulation

of the theory.



Preface

The night before my oral high school mathematics exam, preparing for the

topic in�nity, my doubts, which had lingered for some time, about what I

had been told by my teacher about Hilbert's Hotel and Cantor's theory of the

in�nite and was now expected to explain back to her, reached a point where

I could no longer ignore them. I happened to know a PhD student in mathe-

matics, whom I therefore called and asked a few critical questions. He assured

me that the theory of the trans�nite was on a solid footing. And I accepted

it. Mathematics is absolutely certain, I knew, so if the mathematicians agree

that there are higher in�nities, then that is how it is.

It was therefore with great anticipation that I a few years later started on

a course on logic and set theory as part of my minor in mathematics at the

University of Copenhagen. Now I would get the full story, and I expected to

be convinced. When there was virtually universal agreement among math-

ematicians, it had to be because they had very strong reasons that it was

merely a matter for me to take in. Deep was my disappointment with the

mere metaphors and the reliance on the power of three dots that I found their

case to rest on.

Over the following years I gradually formed my own ideas on the subject. The

philosophy education in Copenhagen was �exible and allowed me the time

to delve deep into any subject I fancied writing a paper on. I took a �rst

stab at the believer in actual in�nity, learning a lot in the process, although

I did not at the time realize just how challenging an opponent she is. A new

course in the philosophy of mathematics, that was introduced at just the time I

needed it, also gave me the opportunity to engage seriously with intuitionism,

the rebellious opposition to main stream mathematics that I had until then

only had a vague impression of. Although �nding the idea fascinating, it was

clear to me that it was far too extreme. It seemed incomprehensible to me

vii
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that no one had explored the position that I perceived right between classical

mathematics and intuitionism.

At around the same time an instructor pointed me towards Hofstader's Gödel,

Escher, Bach, a work that, although I could not make myself agree with its

conclusions, kindled my imagination in a way that no other book has done

before or after. I also found Kripke's Outline of a Theory of Truth, which at

the same time pointed in the right direction, I was and am convinced, and

left a lot of improvement work for me to do. I spent hundreds of hours lost

to the surrounding world and with my eyes focused to a point at in�nity,

contemplating the mysteries and paradoxes of self-reference. Together the

two texts set me on the course to independent and original contributions to

philosophy. A visit to the Institute of Logic, Language and Computation in

Amsterdam provided me with the skills to develop my ideas in a rigorous and

clear way, allowing me to write my master thesis and two publications on my

�rst ideas on how to generalize and modify Kripke's theory.

This dissertation is the provisional culmination on that intellectual journey.

I believe I have managed to develop my previously embryonic idea into a

comprehensive and coherent theory on the nature of mathematics, taking the

golden middle path between classical mathematics and intuitionism.

I have written the dissertation during two academic years spent at the Northern

Institute of Philosophy at the University of Aberdeen and one academic year

visiting the Plurals, Predicates and Paradox research group at the University

of Oslo.

I am indebted to a number of people who helped me through these three years

and made them very interesting. My foremost thanks goes to my primary

supervisor, Crispin Wright, the sharpest thinker I have had the privilege of

knowing.

Øystein Linnebo, my secondary supervisor and host during the Oslo stay,

generously o�ered his time and insight whenever I needed it and could be

counted on for critical but always constructive feedback. To him and the

other core members of his research group, Jon Litland, Jönne Kriener and

Sam Roberts, I am grateful for many stimulating discussions in and outside of

seminars.

Aaron Cotnoir also acted as a secondary supervisor in my �rst year and helped

me improve on the �rst rough drafts of Chapters 5 and 6. Toby Meadows gave

Chapters 5 and 7 a �nal check.

Mark van Atten met with me on my two visits to Paris to discuss drafts of

Chapters 2 and 3. He forcefully defended Brouwer against my attacks, thus
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� I hope � ensuring that those attacks are now properly directed at Brouwer

and not at a straw man. The second of those two Paris trips was due to the

kind invitation of Michael Detlefsen. Thanks to him I spent the entire month

of June last year in the charming capital of the French, attending logic talks

and living well.

My o�ce mate, Andreas Fjellstad, made sure it was never boring to come

to work and was kind enough, in between discussions of tonk, to leave me

occasional moments to work on this dissertation. To the remaining members

of NIP, past and present, and the rest of the philosophy department I can only

say that I am sad to leave you and that you will always hold a special place

in my heart.

A very special thanks goes to my parents, Marianne and Jesper, who provided

me with both a generous loan, without which this endeavor would not have

been possible, and a welcoming home in Denmark to return to on holidays.

Finally, I should, in the interest of full disclosure, acknowledge a debt to my

own former self: a handful of paragraphs in sections 5.2, 6.3 and 6.4 are more

or less copy-pasted from my master's thesis.

Casper Storm Hansen

Aberdeen, July 2014
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Introduction

The primary problem in the philosophy of mathematics is to �nd out what

it is we are talking about when we talk about mathematics. L.E.J. Brouwer

gave a wonderfully simple answer to that question, namely that we talk about

the structure of our mental experiences. It is a wonderfully simple answer

that has been almost universally rejected; not so much because of its intrinsic

implausibility, but rather due to the consequences for logic he drew from that

ontological thesis, which turned the beautiful queen of the sciences, believed

to live in a paradise, into a horrid witch expelled to a dark underworld.

The ontological thesis is correct, I believe. The consequences Brouwer drew

from it are largely mistaken. The actual consequences are much less detrimen-

tal. Building from mental constructions alone, we can erect a mathematics

that is much closer (in so far as a metric for such an abstract space can be

assumed to be given) to classical mathematics than intuitionism is. That is

the agenda for the present dissertation.

Formulated with a little more precision, the central task of the philosopher of

mathematics is to make ontological, semantical and epistemological sense of

mathematics, i.e. to locate a part or aspect of Being that can serve as the sub-

ject matter of mathematics and provide referents for the mathematical terms

and truth makers for the theorems in such a way that the fact that we have

mathematical knowledge can be explained. But which mathematics? There

are classical mathematics, intuitionist mathematics, other types of construc-

tivist mathematics, strict �nitist mathematics, etc. Which mathematics is it

that the philosopher should make sense of? In spite of the revisionism I will

champion in this work, I think that it is classical mathematics for which onto-

logical, semantical and epistemological justi�cation should �rst be attempted.

Classical mathematics is both the simplest and the most powerful mathematics

to work with, so if there is a philosophical foundation for it to be found, doing

so would be the greatest accomplishment possible in this branch of philosophy.

2



Introduction 3

Let us pretend, just with the aim of making a point, that there were some par-

ticular part of Being that all mathematicians took to be the subject matter of

their science and with reference to which they practiced classical mathematics.

Even in that counter-factual situation it would not su�ce for the opponent of

classical mathematics to argue that this part of Being did not justify classical

mathematics. For if there were some other part of Being that did, then the

mathematicians would be vindicated (at least qua mathematicians, if not as

metaphysicians) and could go on doing what they did. (In that way, it seems,

mathematics is di�erent from every other science.) As it happens, there is no

agreement about what (classical) mathematics is aiming to describe. But that

does not detract from the point: only if there is no possible foundation for

classical mathematics is classical mathematics wrong. And if it is wrong, we

should �nd a philosophical foundation with which we can salvage as much as

possible, without any prejudice about where to look.

It will be argued in Chapter 1 that we have established no foundation for

classical mathematics and that there is room for serious doubt about its pos-

sibility. On that basis we will reject classical mathematics as a mathematics

that has the level of epistemic certainty that we should require of something

we rely so heavily on in the sciences as we do with mathematics. Then we

will go in search of the ontologically acceptable mathematics that is closest.

Although we will conclude that it is among mental constructions that we shall

locate mathematical objects, Chapters 2 and 3 and parts of Chapter 4 are con-

cerned with showing that intuitionism is not it. Constructivism is accepted,

veri�cationism is rejected.

The main characters in this dissertation will be the Platonist and the intuition-

ist and then the so-called non-veri�cationist constructivist, whose part I will

play myself, and who will dominate the stage from Chapter 4 onwards. The

strict �nitist, who believes that in�nity has no legitimate role to play, not even

in its potential form, and the mathematical empiricist will be minor characters.

There are a couple of characters that one might expect to �nd in this play,

who do not appear (outside of this paragraph). One is the logicist. The reason

is that the most fundamental question we will be concerned with is whether

mathematical propositions are about physical, mental or abstract entities, and

the logicist is not concerned with that. He claims that mathematical proposi-

tions are logical propositions, but that just pushes the question back to what

it is that makes purely logical propositions true or false. The formalist will

also not play a role, except for the purpose of the occasional comparison. She

will not because our conclusion will imply that such desperation is not called

for. The structuralist will not be admitted to the scene because he responds
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to a perceived luxury problem,1 namely that there are several di�erent struc-

tures in Being that can do the work of, e.g., the classical real numbers. The

conclusion in this work will be that there are probably none. Our challenge

will be to �nd structures that exemplify the kind of structures that classical

mathematics deals with or, failing that, some that come �as close as possible�.

The problems that may arise in case several di�erent structures for the same

theory can be located are insigni�cant in comparison and will be set aside. At

the end of Section 1.1, the Platonist will have evolved into a modal Platonist

and she is a sort of �ctionalist.

Chapter 2 is about Brouwer's lawless choice sequences and will be entirely

negative, arguing that they do not have the salient properties attributed to

them by Brouwer and that they do not add to the theory of real numbers in

the way he claims. Chapter 3 gives a novel interpretation of Brouwer's con-

ception of truth. The so-called Brouwer-Heyting-Kolmogorov interpretation is

rejected qua exegetical thesis about Brouwer's intuitionism and replaced by an

interpretation operating with both a strong notion of truth, �truth-in-content�,

and a weaker but intimately connected, �truth-as-anticipation�. In Chapter 4

I will again argue against Brouwer, but here the aim is not purely negative.

I will not argue that the two notions of truth are illegitimate. Separating

constructivism and veri�cationism, I will just make the point that Brouwer

is mistaken about the claim that truth-as-anticipation is the weakest legiti-

mate notion of truth. I will claim that that honor befalls an even weaker type

of truth, �truth-as-potentiality�, which is also �grounded� in truth-in-content.

On the basis of that conception of truth and thereby an ontology of mental

constructions, classical arithmetic will be vindicated.

The rest of the dissertation is concerned with theories of collections, and here

the conclusion is not as positive: classical set theory can (unsurprisingly) not

be salvaged. We will reject ZFC together with its underlying idea, that of the

combinatorial notion of collections. Following Brouwer we will turn instead to

the logical notion, where a collection is characterized by a criterion of mem-

bership. However, we will not follow him very far. There is (surprisingly) a

connection between constructivism and Kripke's theory of truth, and the logic

that is used in that theory is signi�cantly closer to the bulls-eye than intuition-

istic logic. That will be the subject of Chapter 5, where we will investigate

the fate of real numbers and diagonalization in such a theory of classes. We

1The structuralist's slogan, in the case of arithmetic, is �any ω-sequence will do� (see, e.g.,
(Hellman 1989) and (Shapiro 1997)). I agree. I just think, for reasons to follow, that
the supply of ω-sequences is very meager. Shapiro's ante rem structuralism is Platonism
in disguise (see in particular pages 72 and 93-94) and is thus a�ected by the critique in
Section 1.1. Hellman's modal structuralism survives that far but is subject to the problems
considered in Sections 1.2-1.4.
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will also point out the problems of expressive weakness that arise in Kripke's

theory of truth and which exist in analogous form in the class theory that re-

sults from transferring Kripke's principles directly. In Chapter 6 a �rst stab is

taken at solving those problems by proposing an alternative way to do super-

valuation, which, unlike Kripke's own, only assigns the value of true or false

when that value is genuinely grounded at that point in the construction. This

�rst attempt is educational but ultimately unsatisfactory. Therefore, a second

theory with the same aim is developed in the �nal chapter.



Chapter 1

In�nity

The triviality of the sentence �7 is larger than 6� as seen from an intra-

mathematical point of view contrasts sharply with the signi�cance of the philo-

sophical problems of explaining the semantics of that sentence and accounting

ontologically for its truth. It has the same surface structure as �Mt. Everest

is larger than Kilimanjaro� which refers to two objects and is true because

a certain relation obtains between them. So the desire for uniformity of our

theory of semantics compels us to locate referents for �7� and �6� somewhere

in Being and explain the truth of the mathematical sentence on a par with

the truth of the geographical one. And given that, Ockham's Razor further

demands of us that we, at least, make an attempt at doing so without making

stipulations about what is in Being that we would not otherwise have made.

The (mathematical) empiricism of John Stuart Mill (1895) is such an attempt.

The numeral �7� is claimed to denote aggregates of seven physical objects. And

the sentence �7 is larger than 6� is taken to express the fact that any aggregate

of seven physical objects encompasses an aggregate of six physical objects.

In general, mathematical propositions are claimed to be nothing but highly

general laws of nature. So, given that we already accept physical objects and

aggregates thereof in our ontology, a semantics for this sentence and sentences

like it has been secured for free. Semantic uniformity and metaphysical auster-

ity are achieved to a degree that no other philosophical theory of mathematics

can compete with.

The problems with mathematical empiricism are, however, both obvious and

well-known. The thesis implies that if physical objects suddenly changed their

behavior so that every time a group of two objects were placed next to another

group of two objects, two of those objects would merge into a single object,

it would become true that 2 plus 2 equals 3. But we are not open to possible

revisions of mathematics on that sort of basis. Mathematical propositions may

6
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aid us in describing the physical world, but only in the hypothetical way that

if some physical system satis�es certain mathematical axioms then it satis�es

the consequences of those axioms. For instance, if pebbles do not merge or

multiply when placed next to each other, so that pebbles satisfy the axioms

of Peano arithmetic, then placing 2 pebbles next to 2 pebbles will result in

a collection of 4 pebbles. The mathematical propositions are not themselves

about the physical world and do not depend on it for their meaningfulness or

truth values � at least not in this simple-minded way.

Another unacceptable consequence of mathematical empiricism is that if there

are only 1080 atoms in the universe, as the astro-physicists estimate, then there

is no referent for the term �10100�, nor a meaning or a truth value for sentences

containing it. It is obviously both meaningful and true to say that 1020 times

1080 equals 10100. And even if we were to stipulate that such a proposition is

to be interpreted as an assertion about the physical world, and hence to be

counted as not true, it would be very hard to deny that the intended content

of that proposition can instead be expressed both meaningfully and truthfully

by the counterfactual �if there had been a su�cient number of atoms in the

universe, then 1020 times 1080 would equal 10100�. But empiricism cannot

support this, short of being amended with a story about reference to other

possible worlds and thereby being morphed into a completely di�erent theory.

Mathematical empiricism can only supply the ontological and semantical un-

derpinnings for a strictly �nite mathematics.1 But at least some measure of

in�nity must be admitted into mathematics, or one is left with a very di�-

cult task of explaining away the success and apparent meaningfulness of, e.g.,

mathematical analysis.

Hence the appeal of Platonism; a realm of abstract mathematical objects,

existing independently of the physical and mental world(s), is postulated to

secure the meaningfulness of mathematical terms and to supply truth makers

for what is standardly taken to be mathematical truths.2 If we insist on

understanding mathematical sentences on a par with other sentences of similar

grammatical structure, it may seem necessary to postulate such extra entities,

1The limitation to the �nite would be lifted if arbitrary regions of space-time were allowed
as objects and there are in�nitely many such regions. However, there would still be a
problem with more complex mathematical entities such as for example the set of all real
functions. Kitcher (1998) tries to solve this problem, and vindicate Mill, by using iterated
constructions of aggregates of physical objects. He thereby turns the empiricism into a
form of constructivism where it is the subjective acts of collecting that really serve as truth
makers, and the �physical urelemente� are reduced to a role which, on the same assumptions,
could just as well be played by more subjective acts of collecting.
2Some classical references are (Bernays 1935) and (Gödel 1947).
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so doing so is sanctioned by Ockham's Razor, which states that �plurality is

not to be posited without necessity�.3

1.1 The iterative conception of sets

Nevertheless, subscribing to Platonism is a high price to pay metaphysically.

Worse, if you are in the market for a justi�cation of contemporary mathemat-

ics and pay that steep price, you do not get what you were bargaining for.

Slightly simpli�ed, contemporary mathematics is what follows from ZFC by

classical logic, and Platonism does not support ZFC. So I will argue. In this

section we will consider di�erent suggestions for how Platonism could do that

job, beginning naïvely and gradually examining more sophisticated options,

but ultimately �nding them all lacking. In Sections 1.2 to 1.4 we will put

further pressure on classical mathematics. The chapter closes with a section

introducing intuitionism.

To Plato himself, some of the most important characteristics of the World of

Ideas are that it is eternal and unchanging and that it is determinate.4 If we

follow Plato in also assuming that the World of Ideas contains all mathematical

objects, and (anachronistically) let that include sets, then these characteristics

seem to lead to paradox. The World of Ideas presently contains all possible

sets and it is determinate for each set whether it contains itself. So the sets

that do not contain themselves are sharply distinguished from those that do

and therefore they should form a set in the World of Ideas, for the World

of Ideas contains all the sets. But, of course, the set of all the sets that do

not contain themselves can neither contain itself nor not contain itself, but by

determinacy it must either contain itself or not contain itself.

Contemporary mathematics is not subject to such Russellian5 treats of incon-

sistency. The reason is that ZFC is based on the iterative conception of sets.6

According to this doctrine, the sets are exactly the things that are created in

a trans�nite process of discrete stages, where at each stage each plurality of

already existing sets forms a new set.7 So starting with no sets, we form all

the possible sets of existing sets, which is just one, the empty set, ∅. Having
that one set, there are now two di�erent pluralities of sets, namely the empty

plurality and the plurality encompassing just the empty set, and therefore at

3�[P]luralitas non est ponenda sine necessitate� (de Ockham 1979, 322).
4See in particular The Republic, Meno and Parmenides in (Plato 1997).
5See (Russell 1902).
6Or rather, that is one way to motivate ZFC. I will focus on it as I think it is the most
reasonable. For exposition and defense of the iterative conception see (Boolos 1971), (Wang
1974, chapter 6) and (Parsons 1975).
7As has become standard, I am here ignoring the possibility of urelemente.
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the next instance we can create two sets, ∅ and {∅}. Those two sets make for

four possible pluralities of sets, so at the next stage there are four sets. And so

on through all �nite stages. After all those stages, there is the �rst trans�nite

stage where a countable in�nity of sets is available to form an uncountable

in�nity of new sets. And so on forever and ever. . .

Implicit in the above derivation of the Russellian contradiction was the as-

sumption of full comprehension: for any property there is a set of all and only

those sets that have the property. The iterative conception of sets gives a story

that can be used as a background for denying full comprehension. For it is not

in general the case that a property is such that there is a stage at which all

the sets with that property have been formed, so as to be available to form the

intended set. Only restricted comprehension is valid in the iterative universe:

for any given set x and any property there is a set of all and only those sets

in x that have the property. In particular there is no stage where all the sets

that do not contain themselves (which according to the iterative conception

are all the sets) are already formed, so there is no Russell Set. (Thus, it is

claimed, Russell's Paradox never threatened the concept of set, but at most

the concept of classes. Focus on this distinction is postponed to Section 5.1.)

So Russell's Paradox is avoided � but only by making inconsistent assumptions!

On the one hand, the World of Ideas is supposed static, and on the other, the

explanation of the iterative conception of sets is full of dynamic expressions

such as �create�, �process�, �already existing�, �form�, �next instance� and �and

so on forever and ever�.8 Having freed ourselves of the �rst inconsistency, we

must now seek liberation from the second. Let us consider possible ways out

within a Platonic setting.

One possibility is to fully accept the iterative conception and reject the notion

that the World of Ideas is static. After all, unchangeability is not part of the

de�nition of �Platonism� as speci�ed above, namely as the thesis that abstract

(mathematical) objects exist independently of the physical and mental,9 and

there is no reason to feel bound by the teachings of Plato just because we are

using his name. So prima facie it is a theoretical option that the Platonic

universe of sets might be changing. We could, without backing away from the

goal of justifying the iterative conception, compromise with Plato and say that

8Gödel, in his (1947), seems to endorse the view I am here accusing of being inconsistent.
9In fact one could argue that it does follow directly from the de�nition: time is an aspect of
the physical/mental world, so if what exists in the Platonic world is relative to a time index,
the existence of the abstract entities is not independent of the physical world, contrary to
the de�nition. But in itself this observation of a minimal form of dependence is hardly a
major problem for the Platonist, just a cause for minor modi�cation of the exact formulation
of the thesis.
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it is only changing by expanding, thus holding on to the claim of the eternity

of each Platonic entity forward in time.

In spite of this being the direction in which the currently widely accepted

notion of sets seems to push the Platonist, no one, to my knowledge, has

endorsed it.10 And for good reason. If the Platonic realm is dynamic there is

some speci�c state it is in right now. What could possibly determine which

one? What is the rate of change? And what is the force that causes these

changes? It seems absurd to believe in a thesis that leads to such questions.11

However, that was nothing but an appeal to intuition through rhetorical ques-

tions, and I should do better. So here is another stab: the semantics is not

as intended. A universal generalization over all sets that is true today, may

tomorrow be false. For then the sentence may be about more sets and a coun-

terexample may have been created overnight. More generally, sentences that

are theorems of ZFC are at times false. There was a time when it was false

that there is a set of all real numbers. Also, the proposition that every set is

an element of some other set, remains false. For at any given time there is a

stage which is the most recent. This follows from the iterative conception: to

form the sets of a given stage, its elements must already be available. Only

one level of sets can be formed at any given time.

For this reason, it would also seem that the axiom of in�nity remains false.

If known physical discrete stage processes can be taken as a model, this set

creating process would up till now only have gone through a �nite number of

stages and therefore only a �nite number of sets would have been created. To

avoid that consequence the Platonist would have to appeal to supertasks12,

making further heavy metaphysical assumptions on top of those already in-

herent in Platonism. It is, as far as known, logically possible that an in�nity

of stages have been completed, even if the set formation at each stage takes a

positive amount of time. It �just� requires that there is no lower bound on that

duration. The set of the �rst stage could be created in 1/2 second, the sets of

the second stage in 1/4 second, the sets of the third stage in 1/8 second, and

so on. That way, the �rst ω0 stages are run through in just 1 second.

However, the invocation of supertasks would not take the Platonist very far.

Even if supertasks, the completion of in�nitely many distinct, temporally dis-

joint tasks in �nite time, are possible, hypertasks, the completion of uncount-

ably many distinct, temporally disjoint tasks in �nite time, are not. This was
10Maddy (1990) thinks that the universe of sets changes because when physical objects are
created or destroyed, ur-elemente are created or destroyed and with them the impure sets
they give rise to. This kind of change is not relevant to our present discussion.
11See (Parsons 1975) for critique of temporal and quasi-temporal interpretations of the
iterative hierarchy.
12The classical papers are (Thomson 1954) and (Benacerraf 1962).
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argued in (Clark and Read 1984), using the assumption that any task takes

positive time: Given any origin of a time scale and unit of time, and in addi-

tion a well-ordering of the rational numbers, there will for each task be a �rst

rational instant of time in its period of duration. By temporal disjointness,

the function taking each task to that corresponding instant of time will be in-

jective. Therefore, as the image of the function, a subset of the set of rational

numbers, is countable, so is the domain.

In the present context the force of the argument can be strengthened, for the

assumption is super�uous. Whether a stage takes up any time is immaterial.

It is su�cient that they happen at distinct times, which they must if the

idea of set formation based on already existing sets is to make any sense, and

that the before-relation on these instances of times is a well-ordering, which

is also part and parcel of the iterative conception. For then there must be a

positive amount of time separating the instant of time where a given stage is

completed from the next stage, and then the same argument can be run with

those intermissions instead.

As hypertasks are impossible, the iteration of set making cannot go beyond

the countable stages. So even if we set aside the other problems with tem-

poral Platonism, mentioned above, the iteration could not have the strongly

unbounded character which Cantor (1962) and his followers imagine.

An alternative to the temporal interpretation is to accept the dynamic lan-

guage but take it as a metaphor for a certain kind of dependency relation.13

The inspiration could be the relation of dependency among theorems of a for-

mal system. A theorem whose proof relies on another theorem must be proved

later than that theorem, but on a Platonic understanding of mathematics

this does not mean that those propositions achieved theoremhood at di�erent

times. It is just that one of them comes later than the other in the order of

dependency.14

The story would then be that for some sets xx, the set of those sets, {xx},
depends on xx and owes its existence to them but exists �as soon as� the xx

do. This would seem to create the right kind of balance. On the one hand,

there is no problem getting beyond the countable stages, as there is no time

consuming set creation in play. And on the other hand, we still get the bene�t

that temporality was supposed to deliver, namely the well-foundedness with

which Russell's Paradox can be avoided.

13One source is (Potter 2004). However, he does not develop the position much and the
presentation here does not follow him.
14For critique of this way of justifying the iterative conception see (Incurvati 2012).
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However, the balancing act does not succeed. A paradox di�erent from Rus-

sell's arises. The problem arises when we ask why, according to this story,

there are any sets at all. Why could it not be the case that the sets xx exists

but {xx} does not? In particular, when xx is the empty plurality, why does the

empty set exist? We have been explicit about a necessary condition for {xx}
to exist but not about a su�cient condition. If that extra needed condition is

an act of creation, nothing has been gained.

This answer to the question does seem to be implicit in the idea of dependency.

That {xx} exists �as soon as� the xx do, presumably means that there is no

extra condition; for {xx} to exist it takes nothing more than that the xx exist.

This leads directly to contradiction: Let xx be all the existing sets. Then {xx}
should exist. But as no set contains itself, {xx} is not among the xx and hence

they are not all the sets, contrary to assumption.

There has to be something more that it takes to be a set. The story of depen-

dency does not in itself deliver such a criterion and hence does not give us any

reason to believe in a universe of sets that satis�es ZFC, rather than believing

that there are no sets at all.

I think it is safe to say that the suggestion of a changing World of Ideas

is not a viable way to reconcile Platonism and contemporary mathematics,

whether we take it literally or metaphorically. It had to be considered, however,

because lack of change was an implicit assumption in the Russellian argument

to contradiction and not, on the face of it, a de�nitorial part of Platonism.

By the same token, a second and a third assumption must be considered. The

second is the assumption of determinateness, the characteristic that for each

Platonic entity and each property (excluding relational properties to objects

exterior to the Platonic world such as is thought of by Peter) it is timelessly

and non-vaguely the case either that the entity has the property or that it does

not. That is the ontological underpinning for bivalence and, in particular, that

the Russell Set either is or is not an element of itself.

Again we have an assumption that is not strictly contained in the de�nition

of Platonism but nevertheless seems to follow from it. Having postulated the

existence of a changeless world to provide the truth makers for all mathemat-

ical truths, one is in the worst possible position to deny determinateness and

bivalence. When mathematical statements can be taken at face value to be

about the objects they purport to be about, it is very di�cult to see how they

could possibly fail to be either true or false. And, of course, taking that route,

one would no longer be in the business of defending classical mathematics,

which has bivalence as a core assumption.
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The third assumption is one of maximality, namely the assumption that was

expressed above by saying that the World of Ideas contains all possible sets.

If we hold on to Platonism but reject this auxiliary hypothesis, can paradox

be avoided?15

A simple-minded attempt is to say that Russell's Set may simply happen to

not exist and that the burden of proof lies on Russell, if he should want to

show that mathematical Platonism is inconsistent along with Frege's axiom

system, to show that it does. That line of thought will not get one o� the

ground, though. For in the absence of a good speci�c reason for doubting the

existence of Russell's Set, one could not know if not also, say, the number 7 (in

its set theoretic coding, von Neumann style16), would happen to be missing

from the Platonic world and thereby the truth maker for sentences referring

to that number.

The ontological proposal has to be coupled with a semantic proposal to gain

traction. If it might be the case that the Platonic 7 does not actually exist,

merely possible 7's must be allowed to play the role of truth makers (in the

actual world). It must be admitted that some of the theorems of ZFC are

false when interpreted literally and only true when interpreted with implicit

boxes and diamonds. An assertion that there exists an x such that φ must be

translated into the assertion that possibly there exists an x such that φ, while

the similar universal claim must be interpreted to mean that it is necessary

that for all x, φ (Linnebo 2010, 155).

In itself this semantic thesis seems quite reasonable. We are looking for some-

thing � anything at all � in the ontology we are already committed to, prior to

considering mathematics, that can be used as referents for mathematical terms

and truth makers for mathematical sentences. Counterfactual possibilities are

something we are already committed to if we do not have an extremely coun-

terintuitive idea about what is in Being.17 (Although, for reasons to follow, I

do not agree with Linnebo in general it may be worth foreshadowing that in

this particular respect the conclusion of this dissertation agrees with Linnebo's

position.)

15As far as I know the �rst proposal in this direction was (Parsons 1975). (However, Parsons
is vague about how to interpret the modalities that are at the center of his proposal. So it
is on one interpretation of Parsons that he is the �rst to make a proposal in this direction.
On another interpretation, he does not make that proposal at all.)
16See (von Neumann 1923).
17Involving merely possible objects may deliver a solution to Benacerraf's problem � see
(Benacerraf 1973) � for according to this thesis we do not need epistemic access to the
actually existing sets. In fact it is of no consequence for mathematics which sets happen
to have actual existence. The epistemological problem is instead one of knowing what is
possible. That may be a simpler problem. At any rate, it is a di�erent problem! I shall not
go into it here (although the next section is related to this problem), as I think that the
bigger problem is on the ontological side.
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That all mathematical objects that could exist, do exist and exist by necessity,

is a thought that often goes together with Platonism. This �modalism� implies

that that is not the case. Instead, necessarily, there exist some entities that

are not collected into a set, but could be. For instance, all the �nite ordinals

could exist but, �by chance�, fail to form a set.

This means that a set does not exist solely by virtue of its elements existing.

It is not the case that as soon as God had created the empty universe, so to

speak, the empty set existed, along with the singleton of the empty set, etc.

It takes something more to be a set. So there is a �part b� of the analysis of

�forms a set�: a given plurality forms a set i� a) the elements of the plurality

exist (or are �available�) and b) something else. What could that something

else possibly be? It is a trivial observation, and yet it presents a problem

for the Platonist, that part b would have to be something contingent; neither

necessarily satis�ed nor impossible. I can think of nothing else than it being

some sort of act of creation. That route brings us back to the problematic

temporal interpretation of the iterative conception, and in addition it suggests

a creating subject, undermining the abstractness of the mathematical objects.

In an attempt to avoid this conclusion, Linnebo proposes that the modality is

not to be taken in a metaphysical sense. All possible sets do, in fact, exist.

However, they do not form the set of all sets to which restricted comprehen-

sion can be applied so as to imply the existence of the Russell Set, because

individuation of sets happen in a stage-by-stage process:18

I understand the above modalities in terms of a process of indi-
viduating mathematical objects. To individuate a mathematical
object is to provide it with clear and determinate identity condi-
tions. This is done in a stepwise manner, where at any stage we
can make use of any objects already individuated in our attempts
to individuate further objects. In particular, at any stage we can
consider a plurality of objects already individuated and use this to
individuate the set with precisely these objects as elements. A situ-
ation is deemed to be possible relative to one of these stages just in
case the situation can be obtained by some legitimate continuation
of the process of individuation. (Linnebo 2010, 158)

The �rst thing to note is that Linnebo seems to appeal to the work of an

agent, or rather several agents. They do not create the sets, but it is up to

them to make them su�ciently distinct. As a set is constituted by its elements,

the agents can only make it clear which set a set is when it is already clear

which sets its elements are and therefore the individuation must happen in a

certain order.
18See (Fine 2005) for a related approach.



1. In�nity 15

It can be questioned whether this version of modalism is really Platonistic. A

cautious criticism is to say that the letter of the de�nition is satis�ed as we only

required the existence of mathematical objects to be independent of physical

and mental entities, and only the spirit of the de�nition is not. However,

this may well be too cautious. For on Linnebo's account, an explanation of

which sets there are and in particular which supposed sets do not exist must

involve the agents. The existing sets are those that the agents can potentially

individuate. The explanation of the lack of a universal set is that the agents

are unable to complete the individuation of all the sets.

That leads me to the more substantial problem of this theory's implausibility.

I see no other motivation for the modality of individuation and the role it

plays than the desire to avoid paradox. Why is the identity of a set dependent

on the actions of agents? If it is assumed to lead an independent life in the

Platonic realm it would only be natural, in the absence of good reasons to the

contrary, to also assume that its identity properties are a matter internal to

that realm.19

Linnebo's proposed solution to Russell's paradox plays on a separation of ex-

istence and identity: sets exist independently of agents, but agents supply

the identities. However, according to Quine's (1969) famous slogan �no entity

without identity�, existence and identity cannot be separated for any kind of

entity. And for sets the prospect of doing so is only worse than in the generic

case. Sets are constituted by (the identity of) their elements, so to exist as a

set just is to have the clear criterion of identity that the set is identical with

exactly those sets that have those elements. To uphold the proposal, an answer

must be given to the questions, how and in what sense a set can exist prior to

its elements being individuated, and I do not think one can be given.

In another paper Linnebo (2009) makes a distinction between a semantic and a

metaphysical sense of �individuation�. To individuate semantically is to deter-

mine what is to count as the same object for the purpose of �xing the meaning

of a word that is intended to refer to that object. Metaphysical individuation

is a matter of what grounds identity facts independently of language.20 Ex-

actly this distinction spells problems for Linnebo's account: is the process of

19From conversation with Linnebo I have learned that he does not intend that acts of agents
play a role in his theory. The word �interpretation� is meant to take its meaning from the
act of understanding a term, but abstracted from this original meaning to such a degree
that no agents are involved. This, however, seems to be to abstract away all meaning of
the term, and it is not clear that there is a coherent position here. If we abstract away
the subjective element of understanding in �interpretation� are we not just left with that
which model theory has interpreted �interpretation� as, namely a platonic set, making the
justi�cation circular?
20At least it can be de�ned like this by the platonist who believes the objects to exist
independently of language.
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individuation to be understood in the semantic or in the metaphysical sense?

If it is the semantic, it is clear why agents have a role to play, but entirely

unclear why that e�ort has any impact on the platonic sets and hence can

be used to avoid paradox. And on the other hand, if it is metaphysical, the

platonist cannot justify the appeal to the work of agents, and in particular

their inability to individuate the universal set, in his paradox blocking.

Further problems arise when Linnebo considers the question of which sets are

actually individuated right now. He considers two ways of answering it, this

being the second:

As science progresses, we formulate set theories that characterize
larger and larger initial segments of the universe of sets. At any one
time, precisely those sets are actual whose existence follows from
our strongest, well-established theory. (Linnebo 2010, 159fn21)

This answer is not true to the requirement that for a set to be individuated,

all its elements must already have been individuated. For when set theorists

�move� from one model of ZFC to a larger one, they take a leap of uncountably

many stages at once, and the requirement would only be satis�ed if for each

stage whose sets have been individuated, there was an instant of time where it

was the newest. We are back at the problem that only a countable in�nity of

stages could have been realized, and even that only on pain of being committed

to supertasks. Let us consider Linnebo's �rst answer:

The most plausible response to this follow-up question is, I think,
that set theorists generally do not regard themselves as located at
some particular stage of the process of forming sets but rather take
an external view on the entire process. It therefore would be wrong
to assign to ourselves any particular stage of the process. (Linnebo
2010, 159)

This is to dodge the question and does not accomplish more than moving the

problem back a step. Sure, the set theorists may not themselves be engaged

in the process, but rather describe one that some other �individuators� con-

duct or counterfactually could conduct. However, then essentially the same

problematic question re-emerges in another form: who are the individuators

and what exactly do they have to do to individuate a set? To this question,

Linnebo only leaves us with the above answer mutatis mutandis, which is just

as unsatisfactory here as it was before.21

21In conversation, Linnebo has openly admitted to dodging the question and defended doing
so. He describes an agent who in detail goes through the �rst few stages of the hierarchy,
then �gets the hang of it� and imagines how the rest of the process goes without �lling in
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In conclusion, I see no satisfactory way of cashing out the metaphors of the

iterative conception and thereby no way of sustaining the method of paradox

blocking that is the standard in contemporary mathematics. Only one very

unsatisfactory way is left. It is a version of modalism where certain aspects

are simply left unspeci�ed. It is not explained what the su�cient condition for

some entities to form a set is, nor what a set is, nor what the relation of being

an element of amounts to. Instead there is just an appeal to the enormity of

the space of possibilities along the lines of �yeah, those are some really weird

possible worlds, but it is possible that there were such a world, right?�. The

possible worlds contain some objects that we call �sets� and a relation we call

�membership�, but these words are arbitrary and we can give no story about

how the objects and the relation are akin to collections and the relation of one

collection being included in another. They, whatever they are, just happen to

satisfy the axioms of ZFC.

A possible world in which some �sets� and a �membership� relation exist does

not stand in a dependency relation to a possible world with fewer �sets� and a

smaller �membership� relation in any sense of �dependency�, temporal or oth-

erwise, that anyone has succeeded in articulating. If one nevertheless appeals

to such alleged possible worlds, one occupies a position very similar to formal-

ism: the vocabulary of the language of set theory is left uninterpreted, and we

could just as well follow Hilbert's suggestion and use �chair� and �glasses of

beer� as �set� and �is an element of�.22

Accepting the iterative hierarchy on that background is to base the mathe-

matical science on the mere negative fact of the absence of a conclusive ar-

gument that worlds containing something satisfying the axioms of ZFC are

not possibility. I think that mathematics, supposed to be the epitome of epis-

temic certainty, deserves a �rmer footing in possibilities that we can at least

fathom.23

The next two sections are concerned with supporting the claim made here,

that it is not even clear what sort of possible worlds classical mathematics

is about.

all the speci�c details and therefore is no longer anywhere speci�c in the hierarchy. I do not
�nd this explanation helpful. This agent does exactly the same as the set theorist: engages
in the fantasy of someone going through a trans�nite process. We, who are looking for an
underpinning of this fantasy, gain nothing from being told about one more fantasist.
22This, I believe, is the problem with the positive proposal in (Incurvati 2012).
23Two di�erent projects can be distinguished: Developing and justifying a mathematics
that is secure enough that we dare to claim that theoremhood implies truth for something
in Being. And investigating the consequences of more or less arbitrary assumptions without
a claim to high epistemic security. My project here is the former, but I do not dispute that
classical mathematics is a legitimate way to pursue the latter project.
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1.2 Trans�nite ordinals

The modalist bases mathematics on the possibility, for each initial segment of

the iterative hierarchy, that that initial segment exists. Let P be the proposi-

tion that all the countable ordinals and the �rst uncountable ordinal, ω1, exist.

Then speci�cally, she is committed to the possibility of P .

The dialectical situation is that I have no convincing argument to the e�ect

that possibly P is false. I am agnostic. But it seems quite reasonable to

demand of the classical mathematician that she can produce some positive

reasons for believing in possibly P . The epistemic possibility of the meta-

physical possibility of P consisting in the absence of proof of the metaphysical

impossibility of P is too shaky a foundation for mathematics.

In general, it is my contention that to be warranted in making a positive

assertion about the metaphysical possibility of some proposition one must at

least be able to describe, or point to, or imagine, or something along those

lines, a scenario in which the proposition is true. That is a reasonable demand

of a defense lawyer in a trial claiming that it is a possibility that someone

di�erent from his client is the murderer, and it is reasonable in the present

context. I will try to explain why I think that such a scenario is yet to be

provided in the case of P .

Let us set out on the way to Cantor's Paradise. The journey begins with all

the �nite ordinals:

1,2,3, . . .

Could they all exist together? I am already skeptical but will assume it until

Section 1.4. At least it is pretty clear what it is I am asked to believe the

possibility of; I can comprehend each element of this in�nite set. (The strict

�nitist may disagree, but he is not my dialectical opponent right now � he will

be brie�y in Chapter 4.)

If that is possible, it is certainly also possible that one more number, ω0, exists

together with them. Then we are into the trans�nite, and having waived

reservations about that, it seems undeniable that we must also accept the

possibility of a good piece more of the road, such as this:24

ω0, . . . , ω0 ⋅ 2, . . . , ω0 ⋅ 3, . . .

Again, the classical mathematician must be granted that she succeeds in giv-

ing an adequate description of the possibilia that she wants us to acknowledge.

24For de�nitions of ordinal addition, multiplication and exponentiation see, for instance,
(Devlin 1993).
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Each element of the sequence so far has a name and can be thought of individ-

ually, and with a little imagination one can produce a metaphorical image of

the entire sequence, such as a road vanishing in the horizon. The same holds

further on:

ω2
0, . . . , ω

3
0, . . . , ω

ω0
0 , . . . , ω

ω
ω0
0

0 , . . .

It actually holds quite a bit further on, for when we run out of possibilities

with exponentiation, there are techniques for bringing us further that still allow

naming of each ordinal and brings no new philosophical troubles, resulting in

the so-called Veblen ordinals (Veblen 1908).

However, no matter how creative we are in devising systems of notation, we

have only progressed an in�nitesimal part of the distance to the �rst uncount-

able ordinal. The reason, of course, is that any system of notation can only

name countably many ordinals and by de�nition there are uncountably many

below ω1. So even if, for any system of ordinals you may describe to me, I

accept for the sake of argument, that they could all exist, you have still not ex-

plained to me, what it is you want me to believe when you ask me to believe P .

It's like planning to drive from Paris to Beijing and asking for directions, but

only ever getting more and more detailed instructions on how to get out of your

driveway, together with a cheerful assurance that after that accomplishment,

you should just proceed in the same way and you shall �nd the Forbidden City.

That was a preliminary way of making my point. It can be made with more

precision by taking a closer look at the method for getting larger and larger

ordinals. Cantor �created� the ordinals using two �principles of generation�.

The �rst states that for every already formed and existing number, a new

number can be created by adding a unit to it. The strong principle is the

second one, according to which �if any de�nite succession of de�ned integers

is put forward of which no greatest exists, a new number is created by means

of this second principle of generation, which is thought of as the limit of those

numbers; that is, it is de�ned as the next number greater than all of them�.25

The operative word is �created�. Presumably, Cantor did not mean it literally

and we have already rejected a dynamic understanding of the hierarchy, so

neither can we. Instead, we must understand the demand on a succession of

numbers to be that those numbers can exist together. So the second principle

becomes �For every possibly existing succession of numbers of which none is

the greatest, a new number could exist together with them, de�ned as the

next, greater than them all�.

25�[W]enn irgendeine bestimmte Sukzession de�nierter ganzer realen Zahlen vorligt, von
denen keine gröÿte existiert, auf Grund dieses zweiten Erzeugungsprinzips eine neue Zahl
gescha�en wird, welche als Grenze jener Zahlen gedacht, d.h. als die ihnen allen nächst
gröÿere Zahl de�niert wird.� (Cantor 1883, �11, original emphasis).
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On that interpretation I have no objection to the two principles. Between

them, they just say that if some numbers can exists together, then those num-

bers plus one more could too. Only a strict �nitist would deny that. The

question is what could exist together.

When we have a system of notation for a set of ordinals, it is relatively clear

what believing in their possible co-existence amounts to. Hence, the applica-

tion of the second principle to such sets is not as objectionable as the more

liberal applications that Cantor allows. However, as noted, it does not get us

out of the domain of the countable.

The more liberal and daring way of using the second principle is when a suc-

cession is considered �formed� simply because it, allegedly, consists of exactly

those ordinals that satisfy a given predicate. The only way to get ω1 is to

take the predicate of being a countable ordinal, turn it into a set by compre-

hension and apply the second principle to that. Cantor gives us no reason to

believe that such a set could exist, he merely presupposes it. It is of course

not legitimate to use the second principle like this on any predicate. If the

predicate applies to all possible ordinals, as for instance the vacuous predicate

of being self-identical does, we run into Burali-Forti's Paradox (Burali-Forti

1897): the new ordinal that the second principle produces must be larger than

all ordinals including itself. How do we know that �countable� is not such

a predicate? We do not. Only if there is a possible uncountable ordinal, is

it the case that �countable� does not apply to all the possible ordinals that

�self-identical� applies to. So the possible existence of such an ordinal is only

guaranteed by Cantor's method in a viciously circular way.

Cantor's attempt at convincing us of the possible existence of ω1 in e�ect takes

the following form. Let φ be a predicate such that we do not know whether

all possible ordinals satisfy φ. Consider the set of all ordinals that satisfy φ

and apply the second principle to it. Call the resulting ordinal α. By reductio

it follows that α does not satisfy φ. Ergo, φ does not apply to all possible

ordinals.

It is conviction created ex nihilo. From the mere absence of a known contra-

diction in the assumption of all ordinals satisfying φ existing together, Cantor

wants us to conclude that they can.

I think we should remain skeptical about the possible truth of P because we

have but the �imsiest of ideas of what the truth of P would amount to. No

intuitive understanding can be provided, for any attempt at doing so involves

transfer of spatial and temporal metaphors to a domain where they clearly

break down. The grasp that we have of P is purely conceptual and purely

negative; it is based on nothing but the negation of the property of being
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countable. The fact that no contradiction has, as yet, been deduced from the

linguistic description of P , is to my mind not su�cient assurance that I would

base mathematics on it.

I am also skeptical about the very �rst use of Cantor's second principle, the one

that takes us into the actual in�nite. I will return to that below, after a section

where the focus is shifted from trans�nite ordinals to trans�nite cardinals.

1.3 The continuum hypothesis

According to the believer in the possibility of actual in�nity, there are two

routes into the trans�nite cardinals. One goes via the ordinals: First we take

the predicate of having �nitely many predecessors, negate it, and turn it into

an ordinal by Cantor's second principle. That gives us the �rst ordinal that

has in�nitely many predecessors, ω0, and as a consequence (by abstracting

from the order of the predecessors of ω0) the �rst in�nite cardinal, ℵ0. Then,

similarly, we take the predicate of having at most ℵ0 predecessors, negate it,

and turn it into the �rst ordinal to have more than ℵ0 predecessors, ω1, with its

associated cardinal ℵ1. And so it continues, ℵ2,ℵ3, . . . ,ℵω,ℵω+1, . . ., to name

the �rst �few�.

The second route is by the notion of powerset. The procedure of going through

the elements of a collection, selecting or deselecting each one in order to form

a subset, is idealized to in�nite sets, and it is further assumed that there can

be a set of all the possible results of this in�nitary �procedure�. As Cantor's

Theorem (1891) tells us that the powerset of any set is larger than that set,

repeatedly taking powersets is an alternative engine of trans�nite cardinal

production: the set of natural numbers gives us one cardinal, its powerset

another cardinal, the powerset of the powerset of the set of natural numbers

a third cardinal, etc.

If one believes that we are dealing with a clear conception of the in�nite and

in particular that we are in possesion of a de�nite idea about what the world

would be like if P were true, then one must believe that these two routes lead

to the same place. Any cardinal �produced� by the ordinal method must be

comparable to any cardinal �produced� by the powerset method, i.e. it must

be the case that either the �rst is smaller than the second, they are identical,

or the �rst is larger than the second. In particular, there must be an answer to

the question whether the cardinal number of the powerset of the set of natural

numbers is identical to ℵ1.

However, the answer to this question, the question of the truth value of the

continuum hypothesis, is yet to be found. I am not only referring to the fact
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that the continuum hypothesis has been shown independent of the axioms

of ZFC.26 Rather, I mean it in the broader sense that, as far as known, no

answer to the question can be informally deduced from the intuitive ideas of

Cantor's generative principles and powersets. Or in more familiar terms: no

suggestion for adding an axiom to ZFC which would settle the question and

which is intuitively true, assuming the mentioned ideas, has won widespread

support.27

As far as is known, Cantor's generative approach and the power set approach

to the trans�nite do not match up. I will let Quine enter the stage again, just to

repeat his one line: �no entity without identity�. The theory of the trans�nite

is in a condition where it is not at all clear what it is we are asked to believe

in the possibility of. The continuum hypothesis is not just an interesting open

research question; its undecidability is a philosophical problem for those who

believe in the possibility of in�nity. Of course, it may be the case that the

question is not undecidable, but just undecided. If that changes in the future,

the believer in the possibility of actual in�nity will have a somewhat stronger

case. However, in the present state of a�airs the openness of the question is

another reason for being skeptical.

1.4 Countable in�nity

Above I have given reasons for being skeptical about actual in�nity beyond

the countable. Now I will aim the guns at this, the smallest kinds of actual

in�nity, itself and try to convey an understanding of why there is room for

rational skepticism about its possibility, even though no explicit contradiction

is known to follow from the assumption of its existence.

Let me make it clear that I readily concede the epistemic possibility of the

metaphysical possibility of actual in�nity, for I do not have a proof that it is not

metaphysically possible. I also do not think that actual in�nity is unintelligible.

In one sense it is perfectly clear what it is they claim, those who argue for the

metaphysical possibility of actual in�nity. I understand what it is for the

world to be �nite, and therefore I understand the negation of that proposition.

I understand it, but only conceptually. I have no intuitive understanding of

the possibility of actual in�nitude. (What about the road vanishing in the

horizon? That is merely a metaphorical image of actual in�nity, for it is not

an actual image of actual in�nity. To get the sense of in�nity, the still image
26Gödel (1940) showed that the negation of the continuum hypothesis does not follow from
ZFC, and Cohen (1963, 1964) proved that neither does the continuum hypothesis itself (both
assuming that ZFC is consistent).
27For detailed discussion of the present situation, see (Woodin 2001a), (Woodin 2001b) and
(Koellner 2013).
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is not enough; I have to play a movie in my head of me driving along the road,

never meeting an end. That is a movie illustrating potential in�nity.)

Let me take Benardete as my dialectical opponent at this point in the discus-

sion. He writes the following:

I am prepared to agree with the �nitist rejection of aleph-null as
a cardinal only on the assumption that it is absurd to speak of
aleph-null apples. But that assumption is a mistake. The �nitist is
obliged to say that he knows a priori, apart from any empirical or
scienti�c evidence, that there exist only a �nite number of stars in
the heavens. If it is unintelligible and meaningless to speak of an
in�nite number of stars, then it follows that we know a priori that a
spaceship which is launched to explore the heavens must be at some
precise �nite time in the future (travelling at a uniform velocity)
eventually encounter each and every star that now exists. Finitism
is thus seen to be a form of apriorism at its worst. (Benardete
1964, 30�31, original emphasis)

I reject the claim that I have committed myself to such an obligation. Be-

nardete slides from something being �absurd� to it being �unintelligible and

meaningless�. The former relates, presumably, to metaphysics, the latter to

semantics. I think it is absurd to think that an in�nity of stars could exist (as

I shall explain in due course), but I do not think it is unintelligible and mean-

ingless to suppose so. A totally absurd scenario can intelligibly be described.

He also slides from an in�nity of stars being metaphysically impossible, which

is what the �nitist is committed to,28 to that we know (present tense) a priori

that the number of stars is �nite. I think that it is metaphysically impossible

for an in�nity of stars to exist, but I do not claim to know so.

Let us help ourselves to an inter-possible-world-travelling spaceship and go

visit one of these worlds where there are in�nitely many stars. In the world we

arrive at there are, unsurprisingly, in�nitely many inhabited planets orbiting

a subset of the in�nitely many stars. Landing on one of these, the planet

of Zvyagel, to explore further, we immediately notice the immense wealth of

the Zvyagelians. They all live in luxurious houses that are best described

as castles, they have more delicious food than they could possibly eat and

whenever a yacht of theirs gets wet they discard it and switch to a larger one.

First assuming that the Zvyagelians are in possession of superior production

technology, we are corrected when we, after having been guests on the planet

for a while, learn how to communicate with the Zvyagelians. They tell us

28Benardete's ��nitist� should therefore not be confused with the �strict �nitist� mentioned
elsewhere in this dissertation. The former believes that actual in�nity is impossible, the
latter rejects even potential in�nity.
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that until a century ago they su�ered from the same problems of insu�cient

resources as we do, and that the solution came not from an engineer but from

an economist. She came up with the scheme, which was quickly agreed on

and executed, that they should contact a hundred other inhabited planets and

ask them to send everything they produced. They all obliged and have since

then each sent a rocket every month containing their entire production of food

and other goods, allowing the Zvyagelians to live a life of abundance. The

marvelous thing is that no threat of military power was sent along with the

request. The inhabitants of the supplying planets all acknowledged, free of any

duress, that the scheme was bene�cial to all involved parties. For along with

the request came the instruction to pass on the same request and instruction

to a hundred other planets, so that each supplying planet was itself supplied

by other planets who in turn was supplied by still other planets and so on.

This scenario of a well functioning pyramid scheme I �nd absurd, and even

though it is neither unintelligible nor meaningless nor involves any contra-

diction that I am aware of, I doubt very much that it is possible. I �nd it

too absurd and doubt it too much to be comfortable having the queen of the

sciences be associated with such tales of fantasy.

Coincidently, during our visit to Zvyagel, the Zvyagelians receive the great

honour of hosting the annual meeting of the Society of Gods which has denu-

merably in�nitely many members.29 In addition to their usual business, the

gods have decided to use this year's meeting to hold a fair in�nite lottery.30

The Zvyagelians can enter the lottery by buying a ticket with any natural

number printed on it. The gods therefore produce an in�nity of balls, one for

each of the natural numbers and each marked with that number, to use for

drawing a winner. All the balls are placed in an urn. That this is a regular

urn of �nite size poses no problem, of course, for the n'th ball has a volume of
1
2n cubic centimeters.

The membership cards of the Society are also numbered by the naturals, and

according to that numbering the urn is passed from god to god in reverse order

so that in the span of one minute the urn has been in the possession of each

member of the Society. God number 1 will be passed the urn at t = 1
2 and it

is his job to remove all but one ball from the urn before t = 1; the remaining

ball contains the winning number. Before that, the urn will have been at god

number 2, who gets it at t = 1
4 and reduces the number of balls to 2. The third

god will get the urn at t = 1
8 and he must leave 4 balls. In general, god number

29The minutes of a previous meeting of the Society are to be found on page 259-260 of
(Benardete 1964).
30They are inspired by (de Finetti 1974) where the idea is discussed in the abstract without
any indication of how to actually carry out such a lottery.
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n is handed the urn at t = 1
2n and has 1

2n minutes to reduce the number of

balls in it to 2n−1 and, if n ≠ 1, pass it on to god number n − 1.

The gods do not simply give themselves the instruction when god n receives 2n

balls, he must leave 2n−1 random balls in the urn. If they did, they would not

have ensured that each god n actually receives 2n balls. They might all receive

the urn still containing all the balls, thus being unable to follow the instruction,

because all the previous gods have received the urn still containing all the balls

and been unable to follow the instruction. The gods guard themselves against

this danger by instead giving themselves this more complex instruction: if god

n receives 2n balls, he must leave 2n−1 random balls in the urn. If he receives

more, he must leave the lowest-numbered 2n−1 balls in the urn. If any god

were to follow the consequent of the second part of the instruction because

he receives too many balls, he would remove balls in a non-random way, thus

ruining the experiment. However, the complex instruction has the e�ect that

this does not happen. The instruction ensures that each god leaves the right

number of balls in the urn, no matter what. Ergo, each god will act on the

�rst part of the instruction, and the second part is never actually used.31 That

way the gods ensure that the experiment runs as intended.

Each god, being a god, has no problem executing his task. All he must do is

to choose some given �nite number of balls to leave in the urn and he has a

positive amount of time to do so.

Indeed, they all succeed. After the one minute has passed, the urn contains

but one ball, chosen completely at random. One of the gods takes the last ball

out of the urn and reads the number, k1, out loud to his colleagues.

They are astonished! What a surprisingly low number! There are in�nitely

many larger numbers that could have been the winner instead and only k1 − 1
lower numbers, and none was more likely than any other!

They all swear they have made their selections without bias. Unlike mere

mortals, they have the ability to completely ignore part of their knowledge at

will when making a decision and they all used that ability to disregard the

sizes of the balls.

Assuming that such an unlikely result must be a one-time �uke, the gods

decide to repeat the experiment. They run it a hundred times. Worried that

the unequal size of the balls might somehow have in�uenced the �rst result in

spite of the gods' special doxastic ability, they vary the particulars of how the

draws are conducted. A few examples: In the 17th experiment they write the

numbers on index cards and spread them out, face-down, over an in�nite area.

31In this respect they take inspiration from (Laraudogoitia 2011).
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In the 52nd experiment they opt for using in�atable balloons; they start out

having di�erent sizes just like the balls, but as soon as there is only a �nite

number left they all change to having the same size; namely, at any given

time, one cubic centimetre divided by the number of remaining balloons. In

the 90th experiment the gods do not directly choose which numbers to remove

and which to leave; instead they divide the remaining numbers into two piles

and �ip a coin to decide which pile is removed.

Nonetheless, the same thing happens again and again. The results are di�erent

in that the winning numbers, k2, k3, . . . , k100, are di�erent, but alike in the

respect that those numbers are all shockingly low.

The gods end their meeting in a state of bewilderment. The lotteries have

been conducted in a completely fair way, with no god having a bias towards

low numbers, and yet the results were unbelievably low every time.

This continuation of the story about Zvyagel has the same purpose as the �rst,

namely to show that the assumption of the possibility of actual in�nity leads

to absurdities that are almost as bad as contradictions. Here the absurdity is

that of a necessary surprise; any result is much lower than one would expect.

That, anyway, is the somewhat naïve way that I have portrayed the gods as

thinking. In the rest of this section we will consider attempts to bring out

what is remarkable about the lottery in more precise ways.

The supertasks literature consists almost exclusively of papers that draw con-

sequences from the assumption that supertasks are possible. These include

the possibility of stopping an object by intentions alone and prior to all of

the intended actions (Benardete 1964); spontaneous self-excitation of a static

system (Laraudogoitia 1996); creation ex nihilo (Laraudogoitia 1998); forcing

a spaceship to arrive from in�nity (Laraudogoitia 2011); adding and removing

balls from an urn in such a way that there are constantly added more than are

removed but resulting in the urn being emptied (Allis and Koetsier 1991); and

that player A has a winning strategy in a game where all player B has to do

to win is to repeat whatever A says, whenever A utters �zero� or �one� (Bacon

2011). In all cases, the consequences are accepted as merely surprising and

exotic and never used for a modus tollens. I think the latter is a move worth

considering.

It is a very di�cult case to make, for in a debate concerning whether something

is metaphysically possible or impossible, the burden of proof will often be

assumed to rest with the advocate of impossibility, and if his opponent in

this case decides not to accept anything but an explicit contradiction as a

consequence worth taking note of, and instead bites the bullet on all �surprising

consequences�, there is little he can do to move her. That is one reason I will
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still not claim to reach an unequivocal conclusion, but only to cast doubt on

the possibility of actual in�nity. In addition, as we will see below, explaining

why the surprising consequences should rather be seen as absurd consequences

depends on some intuitions that can be di�cult to articulate precisely, and

those di�culties can be exploited by an uncooperative interlocutor. I believe

that the in�nite lottery makes it ever so slightly easier for the supertask skeptic

to make his case than with previously considered supertasks.

Let us settle on some names for the two combatants: the believer in the meta-

physical possibility of reverse supertasks will simply be called �Believer� and

her opponent, with whom my sympathies lie, �Disbeliever�. Disbeliever thinks

that describing the necessary surprise as �remarkable� is an understatement.

Believer thinks that it is an overstatement and that the gods should not be

surprised at all.

One tentative way of trying to bring out what is remarkable about the phe-

nomenon is to say that no rational expectation can be formed about the out-

come of the experiment. The experiment is a stochastic process for which no

probability distribution exists. Therefore, it is peculiar that the experiment

has outcomes, for by repeating the experiment one obtains an empirical dis-

tribution function that would seem to o�er a basis for rational expectations

about future instances of the lottery.32 That gives rise to a dilemma, namely

that neither an a�rmative nor a negative answer to this question seems to be

acceptable: after having done the experiment 99 times, should the gods expect

k100 to be lower thanmax{k1, . . . , k99}? A negative answer seems unacceptable

because that would be to disregard what seems to be relevant empirical evi-

dence. And a positive answer seems unacceptable because that would amount

to assigning larger probabilities to some outcomes (those lower than the max-

32There is no uniform probability distribution on the natural numbers according to Kol-
mogorov's (1933) original de�nition. Weakened notions of �probability distribution� have
been proposed, see (de Finetti 1974) and (Wenmackers and Horsten 2013). However, the
probability distributions for this lottery, according to those de�nitions, only assign non-zero
(or non-in�nitesmal) probabilities to certain in�nite sets. So they do not assign probabilities
that can give an indication of the size (or �order of magnitude�) of the outcome to be ex-
pected. Hence, it is peculiar that it has outcomes with sizes, for by repeating the experiment
one obtains an empirical distribution function that can form the basis for rational expecta-
tions about the size of future outcomes of the lottery. Therefore, these alternative de�nitions
do not solve the problem. Rather, accepting one of them makes it possible to express the
curious nature of the in�nite lottery using a precisely de�ned notion of probability: for any
actual outcome k, the probability that the outcome would have been higher is 1 (de Finetti)
or 1 minus an in�nitesimal (Wenmackers and Horsten). (It could however not � in spite of
these de�nitions making a well-de�ned notion of �expected value� available � be expressed
by saying that it is unreasonable that all the outcomes are �nite when the expected value
is in�nite. For that is also the case in the St. Petersburg Gamble (Bernoulli 1954), where it
is reasonable.) And, of course, it would also be unreasonable to weaken the de�nition fur-
ther so as to allow uniform probability distributions that assign (non-in�nitesmal) positive
probabilities to �nite sets.



1. In�nity 28

imum) than to other outcomes in an experiment where no outcome should be

more likely than any other.

Disbeliever sees in this dilemma an absurdity that indicates that the lottery

is impossible. Believer counters that a sample of 99 can easily be misleading

� even in a �nite lottery. An in�nite sample would be needed, and with

probability 1 such a sample would have no maximum, dissolving the dilemma.

Disbeliever interjects that in this case the sample of 99 would not only be

necessarily misleading, it would be necessarily misleading in a �xed direction

(the maximum of the sample will necessarily be smaller than the �median of the

probability distribution�33), and that is absurd. Believer points out that there

is no contradiction, refers to the general fact that there are many surprising

results in probability theory, and remains unmoved.

As mentioned, the existing literature on supertasks reveals that the possibil-

ity of supertasks implies the possibility of a range of rather surprising and

strange phenomena. However, in all these cases, the surprising consequences

notwithstanding, it is possible to give adequate mathematical descriptions of

the scenarios. What is new about the in�nite lottery is that it is a supertask

that we do not even know how to handle mathematically. Believer may think

that the in�nite lottery should be impossible because no uniform probability

distribution on N exists while other forms of supertasks are possible. Dis-

believer would object that the story does not presuppose the existence of a

uniform probability distribution, but, rather, that the possibility of this sce-

nario only presupposes that (reverse) supertasks are possible; if they are, it

seems to follow from this possibility that there should be a uniform proba-

bility distribution on N. Since there is not, Disbeliever concludes, this is a

story about an event that de�es description by probability theory, which is an

absurdity.

Another way to bring out what is remarkable, which may be an improvement

on the �rst, is to imagine what would happen if the experiment was repeated

a hundred times and someone after each experiment, based on the evidence

gathered so far, tried to ballpark the outcome of the next experiment by men-

tioning a natural number such that the outcome is predicted to be lower than

that number, say by taking the maximum of the previous outcomes and mul-

tiplying it with a googolplex. If this person would tend to be successful, we

have the problem already described: some outcomes are more likely than oth-

ers. And if he tends to be wrong, i.e. if the outcomes tend to increase, that

would also be a problem. For it would be very di�cult to explain why a permu-

tation of the order of those outcomes should not have been equally likely. The

33This is not the case in the St. Petersburg Gamble.
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experiments would not be independent. Therein Disbeliever sees an absurdity

only solvable by rejecting the possibility of (reverse) supertasks. However, Be-

liever has options. She can embrace one of the horns of the dilemma34 and,

to the frustration of Disbeliever, declare that horn for an important and sur-

prising insight : �If the gods run a series of experiments, some force will make

lower numbers more likely than higher numbers� or �If the gods run a series of

experiments, some force will make them dependent�.

A third way is through the concept of �bias�. When considering the gods'

own conclusion that there had been no bias, it seems necessary to make a

distinction between intentional and extensional senses of �bias�. On the one

hand, the gods had no intention to be biased, nor � we can stipulate (at least

for the 17th, 52nd and 90th experiment) � the knowledge required to make

intentionally biased choices. On the other, they ended up actually removing

larger numbers and leaving a �surprisingly low� one to be the winning number.

To imitate a phrase from (Yablo 2000),35 the gods are �forced by mathematics�

to make extensionally biased choices. According to Disbeliever, the �rst horn

of the dilemma implies a commitment to such a force, and by spelling out

what that commitment amounts to, he hopes to put more pressure on Believer:

Assuming independence of the experiments, the maximum of the outcomes of

a series of executions is a guide to the order of magnitude of future executions,

which means that the numbers below that maximum have positive probability.

Prima facie one would think that each ball has a 0.5 chance of being left in the

urn by each god, but the positive probability of some outcomes implies that

this cannot be the case. The probability that a given number is the winning

number is the product of its probability of being left in the urn by each god.

For that product to be positive, the probability of being left in the urn by god

n must tend to 1 as n tends to in�nity. In other words, all but �nitely many

gods are virtually forced to leave certain numbers in the urn.

Disbeliever also tries to put some meat on the idea of bias in another way. Let k

be the empirical mean of the outcomes of a number of executions of the in�nite

lottery. Furthermore, let N be a natural number such that 2N

2 > k. Consider
a �nite lottery between the numbers 1, . . . ,2N which is conducted similarly to

�the last part� of the in�nite lottery, involving N gods: god number N reduces

the number of balls to 2N−1 in a random way, god number N − 1 cuts it down

to 2N−2 and so on. The expected value of the outcome of this �nite lottery

is 2N

2 . However, on the one hand, this value is larger than k. On the other

hand, the content of the urn when there are 2N balls left in an execution of

34She cannot say that a �nite sequence with some given tendency might be misleading, for
that just takes us from one horn of the dilemma to the other.
35�Logic stops them.�
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the in�nite lottery � let U be the set of those numbers � must dominate the

content of the urn at the beginning of the �nite lottery in the following sense:

the function f ∶ {1, . . . ,2N} → U that takes each n in the domain to the n'th

lowest element of U is such that for all n, f(n) ≥ n. What this means is that

not even the �nal N gods are able to conduct their part of the experiment

in the unbiased way that it should otherwise be clear that they are. The

hidden force is able to exert its mysterious in�uence well into the domain of

the �nite, where mundane laws of probability should reign supreme. Believer

(if she accepted the �rst horn) may be a little surprised by the extent of her

commitments, but can insist that she can take them on, once again noting

that no actual inconsistency has been deduced.

Believer also takes issue with the claim that an outcome of the experiment

can be �surprisingly low�. If an outcome is surprisingly low simply because

there are �nitely many lower numbers and in�nitely many higher, then all

numbers are surprisingly low and then none really are. The surprise is naïve

because for any possible value of k1, there are �nitely many possible outcomes

smaller than k1 and in�nitely many larger, so being surprised that that is

the case for the actual value of k1 is to be surprised by a(n epistemically

obvious) tautology. Disbeliever acknowledges that, of course, being surprised

by the proposition �there are �nitely many possible outcomes smaller than k1
and in�nitely many larger� coming out true, if the experiment was actually

executed, would be naïve. But he answers with a distinction between a �rst and

a second order. It makes sense, he maintains, to be �rst-order surprised about

the speci�c outcome while at the same time being aware that the outcome must

necessarily be such as to be �rst-order surprising and thus not be surprised by

being surprised. For Disbeliever, the description of the outcome as a necessary

surprise is not self-undermining but rather the simplest and most elegant way

to express what is absurd about the lottery. Believer responds that even if such

a distinction is reasonable, your �rst-order surprise must be relative to a subset

of N speci�ed in advance. If you had thought of {k1} in advance, you would be

justi�ed in being surprised. And, more generally, if you had speci�ed any �nite

subset of N and it turned out to contain k1, you would be justi�ed in being

surprised.36 But you should not be surprised by any singleton. Disbeliever

responds with a rhetorical question: if the lottery was executed, would you

really not be surprised if the outcome was 7?

Disbeliever has mixed feelings at this point. On the one hand, he feels beaten,

out of rational arguments, back at the naïve-seeming reaction of the gods, left

with a rhetorical question to which he can add strength in no better way than
36Having read (McCall and Armstrong 1989), Believer is cautious not to go on to set up a
precise criterion for when surprise is warranted.
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by uttering it forcefully. On the other hand, he thinks he is actually back at his

strongest and most persuasive point: it would be ba�ing if there were only 6

balls with lower numbers on them, when there are in�nitely many with larger

numbers. There just seems to be no way to explain why to someone who does

not feel the weight of the rhetorical question.

Of course, the point generalizes, as 7 can be replaced with any other number.

So Disbeliever concludes that each drawing implies the absurdity of a necessary

surprise. And he uses this to dismiss the idea the Believer can take refuge in

embracing the second horn of the dilemma. For in addition to dependency

implying the existence of an inexplicable causal force between the individual

executions of the experiment, the real problem is with the very �rst execution

of the experiment, so the relationship between several executions, such as

dependency or lack thereof between them, is, at the end of the day, beside the

point and served merely to highlight the problems.

I think this discussion between the two parties comes down to an intuition

about whether 7 would be a surprising outcome. And here I side with Disbe-

liever. Believer can pretend not to understand what it is Disbeliever is getting

at. She can do that because it is di�cult for Disbeliever to articulate pre-

cisely why he has the intuition. However, the fact that Disbeliever's points

are largely expressed in pre-theoretic language might be more of an indication

that theoretic language at this point in history is not adequate to the task,

rather than that he does not have a reasonable point.

Let us take a step back. My overall goal is to cast doubt on the possibility of

actual in�nity. I have implicitly assumed that if it is possible, then supertasks

are as well, and since, arguably, that leads to absurd consequences, there is

a reductio that should be blamed on the possibility of actual in�nity. One

might try to block the reductio after the admission of the possibility of actual

in�nity by claiming that the possibility of supertasks is an extra assumption or

by pointing out that the story also relies on other controversial assumptions,

such as the spectacular abilities of the gods. However, this can be avoided. Just

imagine that Zvyagel and all the other planets of the universe are numbered.

(This could be the case in a very concrete way, namely if for each planet

there existed a capsule somewhere in the universe containing the number on

a piece of paper and pointing at the corresponding planet. That way, the

planets do not have to be of a particular size to contain the number even if the

numeral takes up a lot of space. Only the capsules have to be of unbounded

size, and since they can be placed anywhere in an in�nitely large universe,

that is no problem.) Then it would be a necessary surprise how low Zvyagel's

number was.
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Then one can try to block the reductio by claiming that an actual in�nity of

abstract objects is possible but not an actual in�nity of concrete objects. That

is a more interesting objection, as it brings out a premise I am relying on. I

have the Aristotelian view that abstract objects must be somehow grounded

in concrete objects. Again, I do not claim to know that there could not be

abstract objects that are independent of concrete objects, but I am skeptical

and therefore want mathematics not to rely on such assumptions.

With this, I shall rest my case about only trusting in the possibility of �nite

worlds. I cannot prove that the in�nite is impossible, but I do think that the

problems I have pointed out should give us pause. Contra Benardete, I do

not think that our current ignorance about the consequences of actual in�nity

should be taken as warrant for believing it to be possible and available as a

basis for mathematics. We should make do with potential in�nity. This means,

cf. the introduction, that the ultimate accomplishment of justifying classical

mathematics is not within our grasp. We must settle for less.

1.5 Intuitionism

We seem to be pushed towards the intuitionism of L.E.J. Brouwer. He aimed

exactly for a philosophy of mathematics that satis�es our overall desideratum,

not to postulate entities in Being that we would not otherwise believe in, and,

in particular, avoids actual in�nity. He does so by identifying the subject

matter of mathematics with the potential in�nity of mental constructions of a

creating subject. Brouwer's intutionism will be the subject of our investigation

from here, through Chapters 2 and 3, and halfway into Chapter 4. This section

will provide an uncritical introduction to Brouwer's thinking.37 The following

two and a half chapters will critically examine two key aspects of intuitionism,

namely the theory of free choice sequences and the failure of tertium non datur.

Inspired by Kant (1781), Brouwer ontologically locates mathematics in the

human intuition of time.38 The basic building block of mathematical con-

structions is the so-called empty two-ity, which is the result of �xing on a

moment of time, noticing it giving way to another moment of time, and ab-

stracting away the contingent and speci�c elements of the experience that the

subject happens to have at that moment. The construction of the empty two-

ity gives us the numbers 1 and 2. That can be iterated by dividing the now

of the initial two-ity's past-now distinction into a �new past� and a �new now�

moments, resulting in an object old past-(new past-new now) that can play the

role of the number three, and so on. According to Brouwer, the mathematical
37See (van Atten 2004) and (van Stigt 1990) for more thorough introductions.
38See page 8 and chapter 2 of (Brouwer 1907).
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universe is limited to what can be constructed in this way. (That is somewhat

vague, but that is because Brouwer himself is vague.39 However, some of the

details will be �lled out below.)

Referring back to the examples presented at the beginning of this chapter, the

sentence �7 is larger than 6� can be interpreted as saying that it takes more

construction steps to make the number 7 than to make the number 6. Both

Mill and Brouwer, therefore, �nd references for the terms of that sentence and

a truth maker at no ontological price (for someone who already believes in the

existence of physical objects and mental constructions).

However, Mill faced the problem that he could not assign to �2 + 2 = 4� the

necessity that we are disposed to think that the truth of this sentence has.

Brouwer arguably does better on this account. His explication of �2 + 2 = 4�

would be as follows: I have constructed a two-ity, then another two-ity and then

a four-ity, and succeeded in constructing a bijection between the disjoint union

of the two former and the latter. The account of the meaning of the sentence

in terms of the behavior of pebbles had the weakness that the laws of nature

might change tomorrow, making �2 + 2 = 4� false. A similar weakness may be

perceived in the fact that, when I try to construct the truth maker for �2+2 = 4�,

I may make a mistake and not get the bijection. However, there is a crucial

di�erence between the physical objects semantics and the mental semantics,

which means that the undermining of mathematical necessity caused by the

possibility of changed laws of nature does not transfer to mental constructions.

A mental construction comes with an intention to execute the construction in

a certain way. This intentionality implies that there is a normative aspect to

constructions, which allows us to say that any correct construction of the sum

of two and two would necessarily result in four. (I will not consider possible

objections here, but see Section 4.3 for a discussion of Wittgenstein's rule

following skepticism.)

Finally, we considered the example of the number 10100 above. Mill's empiri-

cism results in a strictly �nitistic mathematics, and is therefore also in that

respect inferior to Brouwer's intuitionism. Even though the creating subject

can only ever have completed a �nite number of constructions using the in-

tuition of time, re�ection on the intuition of time shows the subject that the

future is in principle (in some sense of �in principle�) open-ended and that the

series of natural numbers could therefore in principle be extended inde�nitely.

It is therefore clear that 10100 is potentially constructable. Thus, Brouwer's

mentalism provides support for a mathematics of potential in�nity but implies

a rejection of actual in�nity.

39See (Kuiper 2004) for an attempt at �lling out some of the details omitted by Brouwer.
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According to Brouwer, the mentalistic ontology also necessitates a rejection of

classical logic.40 An elegant illustration can be given with the classical proof

that there exist irrational numbers a and b such that ab is rational. It is a

proof by cases: Either
√
2
√
2 is rational or irrational. If it is rational, let both

a and b be equal to the irrational number
√
2, and then ab is rational. If it

is irrational, let a be equal to
√
2
√
2 and let again b be equal to

√
2, in which

case we have

ab = (
√
2

√
2)
√
2
=
√
2

√
2⋅
√
2 =

√
2
2 = 2,

i.e. again a rational number. This proof is non-constructive in that it does

not inform us which irrational number a has the sought after property. And

for Brouwer that is an epistemic point with ontological implications: if we

have not constructed an irrational number a and constructed its having the

property of being equal to a rational number when raised to the power of an

irrational number b, then there is no such number, for there is nowhere else in

all of Being to locate it than in our constructions.

The culprit in the classical proof is the very �rst step, the assumption that√
2
√
2 is either rational or irrational in the absence of a construction to support

one of the disjuncts. Thus tertium non datur is not in general a valid principle.

For Brouwer, logic does not have the central position in mathematics that it

has according to the classical mathematician. Logical laws are merely highly

general descriptions of the interrelations of constructions. Actually, they are

merely highly general descriptions of the language that can, imperfectly, be

used to convey an essentially language-less construction from one subject to

another. An inference rule being valid means that whenever constructions

corresponding to the premises are at hand, a construction corresponding to the

conclusion can be e�ected. (This subject will be elaborated on in Chapter 3.)

The non-standard ontology in general and the revision of logic in particular

mean that a long range of important classical theorems fail intuitionistically.

Another example (that has the virtue of leading us to a few other aspects of

intuitionism that need to be introduced) is the theorem that every real number

is positive or non-positive, ∀x ∈ R(x > 0 ∨ x ≤ 0). Brouwer gives examples of

real numbers for which we cannot assert that it is one or the other.

A prerequisite for these examples is the intuitionistic notion of real numbers.

With the exception of the strict �nitist, all parties to the debate agree that a

real number is an in�nitary object. Either it is an ordered pair of actually in�-

nite sets of rational numbers (Dedekind 1872), an actually in�nite equivalence

class of actually in�nite, converging sequence of rational numbers (Cauchy

40See (Brouwer 1908).
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1821; Heine 1872), or, if you ask Brouwer, a potentially in�nite, converging

sequence of rational numbers. A real number is the process of a creating sub-

ject constructing more and more terms of a so-called free choice sequence (see

Chapter 2 for extensive discussion). The terms can be freely chosen by the

subject, or he can decide to follow a rule when choosing terms. In the latter

case, it must be possible to calculate each term in a �nite amount of time for

which an upper bound is known in advance. The speci�c details of the de�-

nition of �real number� can be �lled out in several di�erent, intuitionistically

acceptable ways. In the interest of uniformity throughout the dissertation and

for simplicity, we will do this by stipulating that a real number is a free choice

sequence ⟨q1, q2, q3, . . .⟩ of rational numbers, such that ∣qm − qn∣ ≤m−1+n−1 for
all natural numbers m and n.

A real number for which it can neither be asserted (at present) that it is positive

nor that it is non-positive is constructed using a so-called �eeing property,

de�ned by Brouwer (1955, 114, original emphasis) as follows:

A property f having a sense for natural numbers is called a �eeing
property if it satis�es the following three requirements:

(i) For each natural number n, it can be decided whether or not
n possesses the property f ;

(ii) no way is known to calculate a natural number possessing f ;

(iii) the assumption that at least one natural number possesses f ,
is not known to be contradictory.

An example of a �eeing property P is, for a given �nite sequence of digits not

yet found in the decimal expansion of π and not yet proved not to occur in

it, that that sequence occurs beginning at the n'th decimal. Then let the real

number a be de�ned as the free choice sequence the begins with the terms

−1/2,1/4,−1/8, . . . , (−1/2)n, . . ., and continues like that as long as no n has

had the property P , and stays constant at (−1/2)n from the �rst n that has

the property P onwards (if there is a such). For the purpose of evaluating

inequality statements, we can identify a with the limit of the free choice se-

quence. (A precise de�nition will be given in Chapter 2.) Then at any given

point in the construction where the choice sequence is still �oscillating�, the

creating subject is not in possession of a truth maker for either of the sentences

a > 0 and a ≤ 0.

This invalidity of a classical theorem leads to the validity of a non-classical

theorem, namely that all functions from R to R are continuous.41 Let me

illustrate by explaining why this is an illegitimate de�nition of such a function:
41See (Brouwer 1924a).
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f(x) =
⎧⎪⎪⎨⎪⎪⎩

0 if x ≤ 0

1 if x > 0

The function would have to map a to a free choice sequence f(a). The �rst two
terms of f(a) could both be equal to 1

2 , for that is consistent with subsequent

terms of f(a) converging to 0 and consistent with subsequent terms of f(a)
converging to 1. However, as we cannot make it the case that a > 0 or a ≤ 0

with a �nite calculation with a pre-known upper bound on time consumption,

there is no way to choose a third term of f(a), for any possible choice would

either be too far away from 0 or too far away from 1 to make it possible to

have the sequence converge to that value if a subsequently attains a speci�c

value (because a natural number is determined to have the property P or it

is determined that it is impossible that any natural number does). Thus f is

not a total function on the real numbers, but only a partial function de�ned

for those real numbers that are either positive or non-positive.42

It would thus seem that the foundation of mathematics on mental construc-

tions comes at a heavy price compared to Platonism. We are no longer allowed

to reason using tertium non datur when we are not in a position to assert either

the proposition in question or its negation. We are not permitted to use non-

constructive proofs. Working with discontinuous real functions is also banned.

And a further limitation of intuitionism, which has not yet been mentioned,

is that many of the impredicative de�nitions that abound in classical mathe-

matics are seen as illegitimate. An impredicative de�nition de�nes an object

in terms of a totality of which it is an element. The classical mathematician is

justi�ed in using them, because the de�nition is merely a way to linguistically

picking out an object which exists independently of the de�nition. However,

for the intuitionist a de�nition provides a method of constructing the object

which is constitutive of that object, and therefore the object is not guarantied

to have existed as part of the totality in advance (in some cases they do: an

impredicative de�nition of the form �the smallest natural number such that...�

is in order, because any natural number can be constructed independently of

the de�nition).

One important point that this dissertation makes is that the price of mentalism

is much more modest than the intuitionist would have it seem. The reason is

that the cost is to a large extend incurred because of the auxiliary doctrine of

42This was merely an illustration, meant to convey an intuitive understanding. It does not
qualify as an outline of a proof, for then it would have to conclude by an application of
double negation elimination, which is also intuitionistically invalid. A proper proof of the
theorem proceeds from the Fan Theorem which is a corollary of the Bar Theorem to be
discussed in Section 3.2. The simplest self-contained proof of the continuity theorem in the
literature is, as far as I know, to be found in (Heyting 1956).
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veri�cationism, not because of mentalism itself. The �rst part of this positive

conclusion will be reached in Chapter 4. First, however, we must engage

critically with Brouwer.



Chapter 2

Free choice sequences

A widely held view among the medieval logician-cum-theologians was that

the omniscience of God implied bivalence for sentences about the future, even

though this created problems for the doctrine of man's free will (Øhrstrøm

1984). So, prima facie it seems that Brouwer's denial of bivalence for a num-

ber of sentences about future constructions squares perfectly with his attempt

to avoid making dubious metaphysical assumptions, such as the existence of

a Platonic realm or, indeed, of God, to secure an ontological basis for mathe-

matics. The aim of this chapter is to argue that this link is not as strong as

generally believed, and that Brouwer's ontology can be combined with biva-

lence, or (see Chapters 5 to 7) at least with a logic where the counterexamples

to bivalence are much more scarce.

2.1 Free choice sequences according to Brouwer

The one aspect of Brouwer's intuitionism that distinguishes it most from other

types of constructivism is his use of choice sequences. A choice sequence is

a sequence that is created in time by successive choices of new terms by a

creating subject (Brouwer 1952, 142). Only a �nite initial segment has been

constructed, at any point in time. The sequence, therefore, is never �nished,

but always in a state of expansion. Thus, according to Brouwer, by basing

mathematics on such objects, the need to assume that something actually

in�nite exists is avoided.

The subject can choose to pick the terms according to an algorithm; for exam-

ple an algorithm that selects rational numbers which are increasingly better

approximations to π. That brand of choice sequences are called lawlike se-

quences and are discussed in the next chapter. The opposite extreme are

lawless sequences where each choice of term is made at random. The individ-

38
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ual may grant himself the freedom of allowing each term to be any element of

some species1, e.g. the natural numbers, or he may elect, from the beginning

of the construction or at any point during it, to impose restrictions on his own

future choices. As long as these restrictions allow for more than one possible

choice for each future term, the sequence is of a kind between the lawlike and

the lawless. An important example is the decision to create a real number.

This amounts to the subject imposing on himself the restriction that each term

shall be a rational number qn satisfying ∣qm − qn∣ ≤m−1 + n−1 for all m < n.

Brouwer (1954) and Troelstra (1998, 199) claim that choice sequences enforce

the use of intuitionistic logic. A simple example of where bivalence purportedly

fails is given with a sentence that states that the 17th term of some lawless

sequence is 99, when the sequence has only been developed to the 5th term.

For a more interesting example, consider a sequence restricted so as to be a real

number, but with no other restrictions, which so far only contains the three

terms −1/2, 1/4 and −1/8 (in that order). Here the sentence stating that the

sequence is positive is neither true nor false according to Brouwer. For a real

is, by de�nition, positive if one of its terms satis�es qn > n−1. The three terms

constructed in the sequence so far do not secure that the sequence has this

property and they do not secure that it does not. Likewise, it is not negative,

de�ned as having a term such that qn < −n−1, nor equal to 0, which means

that for all natural numbers n, ∣qn∣ ≤ n−1.

2.2 Constitution of free choice sequences

So much for introductory explanations. We shall now turn on the critical sense

and try to get a more precise answer to the question of what a lawless choice

sequence is. What exactly constitutes it?

As is witnessed by the debate on personal identity, questions of constitution

can often be elucidated by beginning with asking about the related questions

of individuation and self-identity over time. So, if I begin a lawless sequence

now at t1 by making the �rst term 4, and then now at t2 add 9 to it as its

second term, what is it that makes the sequence at t1 identical to the sequence

at t2?

The strongest possible answer, that they are qualitatively identical, can quickly

be ruled out. If they were qualitatively identical they would have exactly

the same properties, so if they were qualitatively identical, then the sequence

should have the property at t1 that it has 9 for its second term, as it has that

1A species is the intuitionistic counterpart of a set: an intensional collection of, possibly,
potentially in�nitely many objects. See Section 5.1 for a more detailed explanation.
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property at t2. So, by the same token, it would be the case for each n that at

t1 it would be a property of the sequence that there was some speci�c number

that was its nth term. Then the sequence would be actually in�nite.

Instead of the property being has 9 for its second term, it could be has, at t2
and later, 9 for its second term. But this makes little di�erence because the

problem still arises, mutatis mutandis, in that there are still an actual in�nity

of properties. The fact that some of them are about the future does not make

for a relevant di�erence.

The failure of this attempt to reach a satisfactory answer teaches us two things:

that we must look for some criterion of numerical identity instead, and that

this criterion must allow for the sequence to be genuinely dynamic in nature.

This is acknowledged by Brouwer (1955, 114) who wrote that:

In intuitionist mathematics a mathematical entity is not necessarily
predeterminate, and may, in its state of free growth, at some time
acquire a property which it did not posses before.

However, commenting on this quote van Atten (2007, 14) states that:

Observe that a property such as 'The number n occurs in the choice
sequence x' is constitutive of the identity of x, but is generally
undecidable and does not satisfy PEM [principle of the excluded
middle].

If this were true, the property the number 9 occurs in the choice sequence

α would be constitutive of α, which implies that the t1-incarnation of α is

not α. Consequentially, diachronic self-identity of a choice sequence would be

impossible. At most, it can be the case that the property the number n occurs

in the choice sequence x is constitutive of the identity of x from the point of

time where n is added to the sequence. On pain of commitment to actual

in�nity, it cannot be before. And from that time onwards, it is decided.

In fairness to van Atten, it should be noted that, at this point, he might be

thinking of the relation of equality instead of the relation of identity. And that

is also an important distinction to make in order to make it clear that I am

concerned with the latter and not the former. If I produce a choice sequence

and you do so as well, following the law that for each term you pick the same

number as I have chosen, our two sequences will be equal, but they will not

be identical (at least, they won't be according to the conclusion reached by
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the end of this section).2 The distinction between identity and equality is

similar to the distinction between types and tokens. However, if equality is

the relation van Atten has in mind, then I would argue that he is, within the

quote above, guilty of smuggling an element of Platonism in via the back door,

just as Brouwer does: van Atten makes a claim about what constitutes the

identity of actually in�nite routes, as will be discussed in Section 2.7.3

A second possible answer to the question of identity is that the identity of the

sequence is grounded in a description such as �the sequence {an} where an is

the number thought of by person P at time n�. The description is, in itself,

a �nite entity and can exist prior to the selection of terms by P, so there is

no actual in�nity in play in that respect. Of course, there are some rather

banal problems with the exact formulation of the description, and therefore

we have to do a little tweaking. It may not be determined in advance at what

time the terms are chosen, so a description like �the sequence {an} where an is
the nth number thought of by person P after time t0� is better. Then again,

the creating subject may not have dedicated his life completely to creating

the choice sequence in question and sometimes thinks of numbers which are

not meant to be part of it. This problem can be solved by changing the

description to �the sequence {an} where an is the nth number which person P

thinks of after time t0 while having the intention that the number be part of

the sequence�. A �nal modi�cation is needed; Brouwer claimed language to be

external to mathematics. Mathematical objects are pure mental constructions

of a single subject, so we cannot �x the identity of a choice sequence to a

linguistic object like a description. But this is easily corrected. Instead we

simply say that it is an idea of the subject corresponding to the mentioned

description that serves to secure the identity of the sequence. This solves the

more trivial problems connected with this proposal and leaves us free to turn

to the more substantial ones instead.

The most substantial problem is that on any version of the description, each

term is identi�ed with what satis�es some de�nite description. This means

that for the description of the sequence to be successful, it would seem that

there must be a denoted object for each of the in�nitely many instances of

the de�nite description schema contained in the description of the sequence,

in order that this object would have to exist at the time where the description
2Brouwer makes this distinction in his de�nition of �species� for example: �properties sup-
posable for mathematical entities previously acquired, and satisfying the condition that, if
they hold for a certain mathematical entity, they also hold for all mathematical entities
which have been de�ned to be equal to it, relations of equality having to be symmetric,
re�exive and transitive� (1952, 142).
3Reacting to a draft of this chapter, van Atten has informed me that he only intended to say
that if the third term of α has been chosen to be 1, then it is known that a choice sequence β,
for which something di�erent from 1 has been chosen as its third term, is not identical to α.
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is made. This does not in itself presuppose actual in�nity, for terms can be

repeated in a sequence and it may be the case that only a �nite number of

di�erent terms appear within a sequence. However, Brouwer certainly does

not want to restrict himself to such sequences. And whether or not there are

in�nitely many di�erent terms, the actual in�nite also threatens in another

way. For even if 42 is both the 3th and the 5th term, it is two separate facts

that 42 is the 3th number which person P thinks of after time t0 while having

the intention that the number be part of the sequence and that 42 is the 5th

number etc.. So, it also seems that there has to be an in�nity of facts about

which terms satisfy the in�nitely many de�nite descriptions.

Brouwer can of course not accept that these should be thought of as an actual

in�nity of di�erent facts, for then he has merely reduced one kind of actual

in�nity to another. What will happen in the future cannot, in general, be facts

in the present. That is, not when the assumption of the possibility of an in�nite

future is made, and Brouwer needs that premise. Hence, he is committed to

anti-realism with respect to the future.

In general, the in�nity of facts can also not be subsumed under a single, �nite

fact (nor any �nite number of �nite facts, for that is essentially the same

thing, if we allow for conjunctive facts). If they can be described (or more

Brouwerian: thought of) in a �nite way, that would amount to a rule, and the

very point of lawless sequences is that they are supposedly not all extensionally

equal to lawlike sequences.

Apparently, the conclusion is that the de�nite descriptions of the future terms

are not satis�ed by anything. Therefore, the description of the sequence does

not refer to anything. That means, there is no sequence. But now let us

see what can be done to resist this conclusion. Consider the option that the

description at any given moment, when n terms have been chosen, refers to an

object of this form:

⟨a1, . . . , an,_,_,_, . . .⟩

That is, the sequence's momentary incarnation is as an in�nite sequence with

n speci�c terms followed by an in�nity of blank slots. The idea behind this

rescue attempt for an otherwise doomed proposal is that actual in�nity is

avoided because just n+1 facts are needed; one for each of the �xed terms and

one to the e�ect that all the remaining terms are �blank�.

The notation �_� is suggestive but has to be substantiated. What we have

been driven to is that it must signify some sort of middle ground, if that is

possible, between the non-existence of the term and �full� existence of it. On

the one hand, the term must exist enough to be able to �ll the role of referent

of the de�nite description, i.e. it must be the unique object satisfying the
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predicate �mth number thought of by person P after time t0�. On the other

hand, the term can not exist in as strong a sense that it has the individual

properties (like being equal to 99 ) which sets it apart from the other terms in

the way that results in an actual in�nity of distinct facts.

If such an intermediate form of existence can be allowed, this view of the

constitution of the sequence seems compatible with Brouwer's claims about

the failure of bivalence. The story would be that the properties which the

�blank� terms may get in the future are not such that the terms do not have

them now, in a strong sense of �not�. Rather, it is undetermined whether

they have these properties. As the sequence expands, there are no negative

facts which change to positive in the way that more mundane change happens,

e.g. when a tomato changes from being not red to being red. Instead, what

is neither-nor becomes either true or false. The world becomes sharper, so

to speak.

However, the price that a follower of Brouwer has to pay to defend his position

in this way is obviously a heavy one. He is now committed to what could

be called �Meinongism for parts�,4 i.e. that there are objects constituted by

parts, some of which do not exist, but just subsist. Paying that price would

defy the purpose of a philosophy of mathematics that is principally about

avoiding dubious metaphysical assumptions. Subscribing to subsisting entities

can hardly be categorized as metaphysically austere.

While the consequences for logic of this view agree with Brouwer's position,

the view itself would be unlikely to gain his acceptance. He doesn't make

positive ontological claims about parts of reality being undetermined, i.e. that

there is a third ontological category between the existing and the non-existing.

His rejection of tertium non datur is not backed up by a positive ontological

story about objects with indeterminate properties; he makes claims of the

form ¬∀x(P (x) ∨ ¬P (x)) but they are not backed up with claims of the form

∃x¬(P (x) ∨ ¬P (x)).5

Could a Brouwerian claim instead that even though the identity of the se-

quence is grounded in the de�nite description, some of the �contained� de�nite

descriptions simply do not refer? No, for that answer makes it impossible to

make certain semantic distinctions which Brouwer wants to make. On the one

hand, he would claim that the sentence �all terms of α are natural numbers�

is true, if the creating subject has imposed on himself the restriction only to

4Meinong famously suggested that there are non-existent objects in order to account for the
meaningfullness of negative existential sentences and to secure a second relata for intentional
directedness from a subject (Meinong 1904).
5See (Brouwer 1928), where x ranges over [0; 1] and P stands for the property of being
rational.
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select natural numbers as terms of the sequence α. On the other hand, the

sentence �all terms of α are di�erent from 99� is not true according to Brouwer,

if 99 has not yet been chosen as a term. But, both the predicate �is a natural

number� and the predicate �is di�erent from 99� are satis�ed by all existing

terms of α, so they are not the cause of the di�erence, and terms that do

simply not exist cannot do that work either. So the search for an extensional

way to ground the identity of the sequence is misguided.

Let us therefore now move on to a third possible answer to the question of

the constitution of a lawless sequence. The combined wisdom derived from

the two �rst attempts is that we should be satis�ed with numerical identity of

the sequence over time, that the sequence should be understood as genuinely

changing, and that not-yet-chosen terms should not be considered parts of the

sequence. Does this then mean that an object of the form

⟨a1, . . . , an⟩

is what we must conclude that a temporal instantiation of a lawless sequence

is? No, for that is just an ordered n-tuple, and a choice sequence is obviously

not just that.

There is a dynamical aspect to a sequence which is lacking from the n-tuple.

This di�erence is, however, not in the past; also the n-tuple has been created,

one term added at a time, in a temporal process. In Brouwer's universe there

are no atemporal mathematical objects,6 it is just that some of the temporal

objects have been completed. That is the di�erence between the tuple and the

sequence: the former has found its �nal form while the latter will continue to

undergo changes.

This is, however, exactly the kind of claim that we have to be cautious about

interpreting. The fact that it �will continue to undergo changes� must not

be understood as an assertion about the actual future of the sequence, for the

actual future does not exist. Given the commitment to anti-realism with regard

to the future, the only content this claim can have is that the creating subject

has an intention to amend the sequence. So, allowing �intention to expand� to

be short for �intention to expand according to restriction R� if there is a such,

this is our third proposal as to a constitution of a lawless sequence at a given

instance of time:

⟨a1, . . . , an, intention to expand⟩7

6�[M]athematics [has] its origin in the basic phenomenon of the perception of a move of time,
which is the falling apart of a life moment into two distinct things, one of which gives way
to the other, but is retained by memory.� (Brouwer 1954, 2, original emphasis)
7I may be slightly better to think of it as an ordered pair consisting of an n-tuble and the
intention to expand: ⟨⟨a1, . . . , an⟩, intention to expand⟩
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This may be a simpli�cation. Brouwer has been interpreted in phenomeno-

logical terms, according to which we do not experience extensionless points of

time.8 Terms are thus chosen during intervals of time rather than at instants

of time. In addition to earlier terms being kept in retention and recollection,

to use Husserl's (1964) terminology, the next term or the next few terms may

be anticipated in protention. But the slight vagueness that this may intro-

duce does not substantially in�uence the points that follow, precisely because

there can only be a limited number of speci�c, individually chosen future terms

which can be within the scope of protention. If an in�nite number of terms is

anticipated, it can only be in the form a rule, or simply as the anticipation of

continuing to make choices (i.e. without the speci�c choices being part of the

anticipation). So, simpli�ed as it may be, this is our �o�cial� third answer.9

And it is a very simple answer; the present product of an ongoing construction

is merely what has actually been constructed plus the psychological fact that

its creator does not consider it �nished. The self-identity of the sequence over

time does not rely on any objects in the future, but simply on the subject

choosing, when he adds a new term, to identify the extended sequence with

the old one.10

Brouwer seems to be assuming that the future terms are there in some sense,

but are indeterminate in some respects. According to this answer, they are sim-

ply not there. That seems to be the answer which gets the stamp of approval

of Ocham's Razor. Brouwer adds exactly the kind of mysterious, extra-mental

entities to his ontology, which his project is all about eliminating.

Furthermore, there is no support for the assumption of there being indetermi-

nate objects in Brouwer's o�cial account of the mathematical ontology. And

he is (what would otherwise count as) quite explicit in his delimitation of the

mathematical realm: only mental constructs are admitted and only those that

can be introduced in accordance with one of the two �acts of intuitionism�

(Brouwer 1952).

The �rst act of intuitionism is the puri�cation of mathematics, where ev-

erything that cannot be grounded in the intuition of time is exorcised. The

intuition of time gives the subject the awareness of a di�erence in the form of

the before-after relation, or in Brouwer's own words, the so-called Primordial

8See (van Atten 2007, 33�34) and (Becker 1923).
9On this proposal there is still, as in the second, intertemporal means to refer to the se-
quence, e.g. �the sequence started by person P at time such-and-such�. The meaning of this
description is constant even though its referent is changing.
10One might question whether such a decision to identify really has the force to secure actual
identity. It does seem reasonable to me, but if I am wrong, the conclusion would instead
be that there is no coherent notion of lawless choice sequences (given rejection of actual
in�nity).
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Intuition of the empty two-ity. As explained in section 1.5, this can be trans-

lated into the numbers 1 and 2, and the number 3 can be created by holding

one before-after relation in retention while distinguishing it collectively from a

new �after�. By repetition, the natural numbers can be constructed and so can

any �nite object or set of �nite objects equipped with relations and operations

in a way that is not much di�erent from how it is done classically.

However, the second act of intuitionism is the realization by the creating sub-

ject that he is not limited to already created mathematical objects. Rather, he

is free to employ the Primordial Intuition in any way he likes in a temporarily

unbounded �free unfolding of the empty two-ity�. This is what opens up for

free choice sequences: the subject can set out to make a potentially in�nite

sequence consisting of �mathematical entities previously acquired�.

The second act is what makes Brouwer's universe potentially in�nite instead

of �nite. But, it is a potential in�nity of Primordial Intuition-created entities.

The second act does nothing to sanction new kinds of basic objects. It just

allows for the open-ended addition and combining of more and more mental

constructs.

2.3 Main argument

I will proceed on the assumption that the third answer is correct and argue that

when there are no �shadowy� future terms, there are also no fuzzy properties to

threaten bivalence, only what could suitably be named �unstable� properties.

Take as example the property of natural numbers that the nth term of α equals

99, when α is a lawless sequence that does not yet have 99 for any of its terms

nor is under a restriction that prevents 99 from becoming a term in the future

or guaranties the same. Calling this property P , the sentence ∃nP (n) is not

true according to Brouwer, and neither is its negation, that it is contradictory

that there is an n for which P holds.

This is precisely what I want to dispute. To do this, it must �rst be noted

that the notion of possibility which is used with the word �contradictory�, is

not the metaphysical one. If, for example, the two �rst terms of α have been

chosen to be 6 and 7, he would consider the claim that those terms are equal

to be �(known to be) contradictory�, even though it is metaphysically possible

that di�erent terms could have been chosen, speci�cally chosen to be both,

say, 6. Instead, it is epistemic possibility; �contradictory� means �not possible

relative to what is known�. Or to be closer to Brouwer's own formulations:

that a sentence is contradictory means that the supposition that that sentence

is true can be reduced to absurdity in a �nite number of steps (Brouwer 1954).
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But it is not possible relative to what is known that �at least one natural

number n possesses the property that the nth term of α equals 99�. For it

is known that there are only a certain �nite number of terms and that none

of them equals 99. Say, for de�niteness, that α at a given point in time is

⟨6,7,13, intention to expand⟩. Then the supposition that at least one natural

number n possesses the property that the nth term of α equals 99 can be reduced

to absurdity in the most straightforward way: The number 4 does not posses

the property that the 4th term of α equals 99, as there is no 4th term. The

same holds for all n larger than 4. So, knowing that there are only three terms

of α, the supposition reduces to the proposition that either 6 equals 99 or 7

equals 99 or 13 equals 99, which is a disjunction of three absurdities and is

therefore an absurdity itself.

And if a real number (i.e. a sequence in the process of being created according

to the restrictions mentioned above) is de�ned to be positive if it has a term

for which qn > n−1, then it is false that

⟨−1/2,1/4,−1/8, intention to expand⟩

is positive. For it is known that the sequence only has these three terms and

that neither −1/2 > 1, 1/4 > 1/2 nor −1/8 > 1/3 holds. When Brouwer claims

that this sequence does not satisfy the criterion for being positive, nor the

criterion for not being positive, this is not a genuine violation of bivalence. It

is just a weird use of negation that is not forced upon us by the ontology of

the subject matter.

What Brouwer claims are properties that violate bivalence, are just unstable

properties. They are properties that a sequence may go from having to not

having or vice versa. The mentioned sequence is not positive but will be if,

say, 1/9 is added as the 4th term, 1/8 as the 5th, 1/7 as the 6th and 1/6 as

the 7th. And in that case it would also change from having the property of

being equal to 011 to not having that property. (Psychologizing a bit, it would

seem that Brouwer's adversity to a�rming of some object that it has a given

property, if the object may lose that property later, is a residue of the belief,

which he rejects, that all mathematical truths are timeless. He will allow that

an object gains a property, but once it has gained it, it must be impossible for

it to lose it again.)

This is the argument in a nutshell. I will attempt to support it by drawing

on some insights from other areas of philosophy, namely the debates about

de�nite descriptions, future contingents and �ctional objects.

11This suggests that the de�nition of being equal to 0 should be changed, but that is beside
the point.
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2.4 De�nite descriptions

If we look at the sentence �the 17th term of α equals 99� (assuming that less

than 17 terms of α have been chosen) through Russell's eyes, the conclusion is

easily reached: the sentence is equivalent to �there exists a unique 17th term

of α and anything that is a 17th term of α equals 99�, so due to the existence

part, the sentence is false (Russell 1905).

The �rst reply one would think of would be that Brouwer could just side with

Frege instead in the famous �the present king of France is bald� controversy.

According to Frege's analysis, that sentence is neither true nor false (Frege

1892), and the same holds for �the 17th term of α equals 99�. But that would

not work for Brouwer; Frege's theory does not in general support Brouwer's

claims about the truth values and lack thereof of mathematical statements. It

is a consequence of Frege's theory that any sentence consisting of a predicate

being applied to �the 17th term of α� is without truth value, while Brouwer

would have it that a sentence such as �the 17th term of α is a natural number�

could be true if the proper restriction had been decided on. It is a common

problem of the theories of Russell and Frege, seen from the Brouwerian point

of view, that they result in over generation of non-true sentences.

This again leaves the Brouwerian with just Meinongism as a general theory

of language under which Brouwer's view of the semantics of mathematical

propositions could be subsumed: the future terms exist partially so as to have

some properties �decided�, i.e. either true or false of the term, and others unde-

cided. But of the three theories of de�nite descriptions, it is only Russell's that

doesn't rely on metaphysical assumptions which are unacceptable to Brouwer.

Meinongism is an incarnation of Platonism, and Frege relies on ein drittes Re-

ich, in addition to the worlds of physical and mental objects, inhabited with

timeless Gedanken and Sinnen.

So, it would seem that Brouwer would have to surrender to Russell's analysis

of sentences like �the 17th term of α equals 99� and admit that they are true

or false. An objection that has to be considered is this one: Brouwer's notions

of truth and falsity are epistemic not ontological. To be �true� means to be

known or proved (more on this in the next chapter). Ergo, the objection goes,

the discussion in the last few paragraphs is misguided as it focuses on the

ontology of the choice sequences.

That objection is not di�cult to shoot down. The analysis of the constitution

of a lawless sequence reveals that it is an epistemically transparent object. As

it only consists of the already chosen terms plus the intention to carry on, the
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creating subject knows everything there is to know about it.12 There are no

unknown facts about future terms. They are not there, and the subject knows

just that. Therefore, in this case, ontology and epistemology comes to one and

the same thing.

A more interesting objection is perhaps that the problem with the discussion

is not its focus on ontology, but its focus on language. According to Brouwer,

language is merely an imperfect means for communication of mathematics

which in itself consist in languageless mental constructions (Brouwer 1907, 73,

79). So, it seems rather odd to mount a critique of his views based on the

semantics of de�nite descriptions. My reply is as follows: what we should

presumably analyze instead of the sentence �the 17th term of α is 99� is the

creating subjects mental state of intentional directedness towards the future

17th term of α and his belief that it equals 99, and I do not see how that

could make any di�erence; the belief is simply false. Of course, my lack of

imagination does not constitute a very strong argument, so let us just phrase

it as a challenge to the Brouwerian: what are the relevant di�erences be-

tween language and thought which implies that Russell's analysis cannot be

carried over?

2.5 Future contingents

However, there is at least one genuine problem present within this discussion of

de�nite descriptions, namely that it is not su�ciently general. A sentence such

as �99 will be added to α� does not have a de�nite article, but the problem is

the same. The core of the problem is sentences about the future. In the debate

about future contingents, theories have been suggested that imply that certain

sentences about the future are neither true nor false (Barnes and Cameron

2011). So we should examine these theories to �nd out if they may support

Brouwer.

Prominent in the discussion of time is the idea of branching time: from the

present, there is �access� to several di�erent possible versions of how the world

is in, say, one second from now, and the path to each of those split up in

di�erent possibilities for the world as of two seconds from now. If in each

of the paths that can be taken through such nodes from the present into the

inde�nite future, 99 is at some point added to α, then the mentioned sentence

is true; if 99 is not added to α in any of the paths, then the sentence is false;

12At least he knows the �simple� facts such as what the terms are. A proposition such as �the
�rst term of α equals the �rst digit to follow the �rst occurrence of one hundred consecutive
0's in the decimal expansion of π�, which is really about more than just the lawless sequence
in question, is another matter.
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and if 99 is added to α in some but not all the paths, then the sentence is

neither true nor false.

There are two ways to interpret this idea of the future as a branching tree.

One is realistically, i.e. to claim that the nodes represent existing possible

worlds. The passage of time is then likened to the movement of a light beam,

which traces a path through the tree. With that interpretation, it is easy to

account for the semantics of sentences about the future, for truth, falsity and

neither-nor can be explained as correspondence or lack thereof to these worlds.

However, as already argued, realism about the future is not a viable way out

for Brouwer, so realism about a plurality of futures certainly is not either.

The second interpretation is that the idea of branching trees is just a tool

for making our discourse and reasoning about the future more precise. That

is how talk of possible worlds in general is understood by most philosophers.

But, in that case, the idea is irrelevant for our present purpose. We are looking

for a metaphysical story to back up the claim of failure of bivalence, and this

second interpretation amounts to taking the metaphysical commitments out

of the theory. So, we must seek answers elsewhere.

An alternative theory about the future which also results in the rejection of

bivalence is that there is just one future, but that it is indeterminate in some re-

spects. So for example, if I am now standing under a cloudless sky in Aberdeen,

the one-second-from-now future is determined with respect to the sentence �the

sky over Aberdeen is not completely cloud covered� being true, while the sen-

tence �Queen Elizabeth is moving her right arm� is neither true nor false, due

to Queen Elizabeth having a free will, so the future is indeterminate in that

respect.

The question that arises from this is how to interpret this indeterminacy. There

seems to be three possible ways to understand the concept of indeterminacy:

either semantically, epistemically or metaphysically (Torre 2011). The truth

value of a sentence is semantically indeterminate if the indeterminacy is due

to a word in the sentence not being de�ned su�ciently precise � if it is vague.

Brouwer was de�nitely skeptical about our concepts being as sharp as we

generally think they are (Brouwer 1905). Nevertheless, it is certainly not his

contention that �99 will be added to α� lacks truth value for that reason.

Because then a shift from focusing on language to focusing on thoughts of an

ideal mathematician would remove the indeterminacy.

Epistemic indeterminacy would in this case mean that the absence of a truth

value is because of the lack of knowledge about α. We have been at this

point before and rejected it. This interpretation would imply that there is

something to be ignorant about. But, being a creation of the free mind of
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the subject, there is only the part of α that he knows about. A lawless

sequence does at t not transcend the creating subject at t. So, the option of

epistemic indeterminacy reduces to metaphysical indeterminacy. That option

is the position that the future exists and some parts of it are sharp while other

parts are blurry. And the Brouwerian judgment about this must be the same

as about the realism concerning a branching future, namely that it is far too

metaphysically �heavy�.

We must stick to anti-realism about the future and investigate what follows

from that concerning the semantics of future-talk. Dummett (2006, 19), using

the term �presentism� for anti-realism about the future (and the past), claims

that �presentism would necessarily require a semantics that repudiated the

principle of bivalence�. I will contest the claim to necessity, but grant that

presentism can, if one is willing to accept an unpleasant consequence, motivate

the rejection of bivalence. If we take correspondence with the future to be the

truth criterion of sentences about the future, then it might seem reasonable

to stipulate that they are neither true nor false, because the future's status

as something that does not yet exist but will, warrants a semantic treatment

of it di�erent from that which does simply not exist. But then consistency

requires that we evaluate all sentences about the future in that way. So going

back to the example of the sentence �the 17th term of α is a natural number�,

we would have to declare it to be without truth value because that part of

the future which contains the 17th term does, as the rest of the future, not

exist. So, in this case we also get a result which the Brouwerian considers over

generation of non-true sentences.

Instead, we should follow Peirce (1935, �368) in locating the truth makers

of sentences about the future in the present. So the sentence �the sky over

Aberdeen is not completely cloud covered in one second from now� is true due

to the present Aberdeen being in such a state that huge amount of clouds

cannot form over it in just one second.

This has consequences for the issue of which modalities are available for future-

talk. Prior (1967, 128�136) attributes to Ockham (1969) the answer that

there are three: necessity, factuality and possibility (or rather just two, for

possibility can be de�ned in terms of necessity in the usual way). He claims

that it might be the case that it is possible that it will rain tomorrow and

possible that it will not, while it is neither necessary that it will rain nor

that it will not, and that yet the sentence �it will (as matter of fact) rain

tomorrow� is true. But, if we stick to sentences about the future actually being

about the present, then we cannot uphold a distinction between something
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actually happening tomorrow and it necessarily happening.13 Therefore, we

must instead follow Prior's �Peircean� doctrine that all factuality claims about

the future are necessity claims in disguise.

So �99 will be added to α� is to be read as �necessarily, 99 will be added to

α�, which is false. And its apparent negation, �99 will not be added to α�

means �necessarily, 99 will not be added to α� which is also false, and is so

without violating any principle of classical logic.14 This interpretation gives

Brouwer the desired truth value of �the 17th term of α is a natural number�;

read with an implicit necessity operator, it is true by virtue of the presently

existing restriction on future terms of α. That is, �the 17th term of α is a

natural number� means �the restriction prescribes that when a 17th term is

chosen, it must be a natural number�, and it is the restriction that supplies

the truth maker and not a 17th term.

Of course, nothing that has been said here precludes a Brouwerian from ac-

knowledging both that there is no future and that sentences about the future

must be understood as being about present necessities, and yet choose to stip-

ulate that such a sentence should count as neither true nor false when the

content of the sentence is neither necessary nor impossible. However, we are

now very far from this choice of semantics being forced upon us as claimed by

Brouwer, Troelstra and Dummett. To the contrary, it seems like a rather un-

reasonable introduction of indeterminacy into the language about something

(the present) which is itself determinate.

Such a stipulation is exactly what the intuitionist makes.15 Qua stipulation

I can see no objection to it, but the intuitionist couples it with a claim that

there is no stronger, legitimate notion of truth and falsity, and that claim is

objectionable. The claim is that I cannot truthfully state the negation of �99

is a term in α� because I cannot rule out that this proposition can be proved,

and the reason that I cannot rule that out is that a proof of the proposition is

a construction which in �nitely many steps provides an n such that the n'th

term of α is 99, and, furthermore, such a construction may include making

more terms of α.16 But, that compares to the situation where I am asked

13That is unless we take the actuality-statements to be true when a certain threshold of
probability is exceeded or if there is necessity just with the exception of ceteris paribus

possibilities. That may be a reasonable way out in the case of the weather examples, but it
is not relevant for choice sequences.
14A sentence such as �it is not the case that 99 will be added to α� is ambiguous between a
wide-scope and a narrow-scope reading, i.e. it can either be taken to mean �it is not the case
that necessarily, 99 will be added to α� or likewise mean �necessarily, 99 will not be added
to α�. But such ambiguity is simply to be resolved by stipulation.
15In Section 3.5 it will be formulated with a little more precision exactly what the stipula-
tion is.
16Thanks to van Atten for pointing this out.
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what the likelihood is that it will rain tomorrow and I then initially refuse to

answer the question, wait a day, get wet and answer �100%�, thereby answering

a di�erent question from the one I was asked. There is an answer I can give to

the question of rain on the day that it is asked, based on existing meterological

facts, and likewise there is an answer to the question whether 99 is a term of

α that I can give now, namely �no�. Given the conclusion in Section 2.2, a

refusal to give that answer constitutes a vow of silence, not a violation of

classical logic.

To sum up, in combination, the points about temporality and about ontology

versus epistemology, when van Atten et al. (2002, 214) claim that

This un�nished character of choice sequences has repercussions for
logic. It means that a sequence can not, at any stage, have (or lack)
a certain property if that could not be demonstrated from the infor-
mation available at that stage. It follows that bivalence, and hence
the Principle of the Excluded Middle, does not hold generally for
statements about choice sequences. For example, consider a lawless
sequence α of which so far the initial segment (1,2,3) has been gen-
erated, and the statement P = 'The number 4 occurs in α'. Then
we cannot say that P ∨ ¬P holds.

they are wrong. Taking the present tense of P literally, P is just false. And

changing P to the future tense, �The number 4 will occur in α�, we cannot

interpret the sentence at face value, for

there are things about the future that God doesn't yet know be-
cause they're not yet there to be known, and to talk about knowing
them is like saying that we can know falsehoods. (Prior 1996, 48)

Instead, it must be understood as a claim about the present necessitating that 4

will be added to the sequence and, as such, be either true or false depending on

which restrictions have been placed on α. (For obviously, necessity cannot be

analyzed extensionally as being about possible worlds, but must be grounded

in the intensional properties of the sequence.)

As an aside, before moving on to considerations about �ctional objects, let

us consider an observation of Posy's (1976): there are two di�erent notions of

negation in play in Brouwer's writings. Posy refers to the following example,

which is about a lawlike sequence, from (Brouwer 1924b): For all natural

numbers n, de�ne cn to be equal to (−1/2)k1 if k1 is smaller than n and the

sequence 0123456789 appears for the �rst time in the decimal expansion of π

with the 0 at the k1'th decimal position, and equal to (−1/2)n if there is no

such k1. Then de�ne r to be ⟨c1, c2, c3, . . .⟩. Concerning this number Brouwer



2. Free choice sequences 54

writes (p. 252) that �die Zahl r ist nicht rational, trotzdem ihre Irrationalität

absurd ist�.17

Just a few lines earlier, he has de�ned the irrationality of a number to be the

absurdity of its rationality. Hence, if we equate the negations expressed by

�nicht� and �absurd� then the quoted sentence asserts the conjunction of the

negation and the double negation of one and the same proposition. So we have

to distinguish them. Posy uses the symbol ¬ for the intuitionistic absurdity

and the symbol ∼ for the simple denial.

He then goes on to propose a reconstruction of Brouwer's logic in terms of

a reduction of ∼ to ¬. He does so using a knowledge operator: Ka
nP means

that at time n agent a knows P . The claim is that ∼P can be identi�ed

with ¬Ka
n0
P , where n0 is the present. With this interpretation some central

Brouwerian doctrines are salvaged. First, we do not have P ∨ ¬P in general,

just Ka
nP ∨ ¬Ka

nP . And second, no proposition ever changes between being

true and false, for if a does not know P at some time n but learns it later at m

then ¬Ka
nP is true at n and stays true, Ka

mP becomes true (i.e. changes from

not having a truth value to being true) and P becomes true.

Considered as a purely exegetical thesis, I can only endorse it. My systematic

point is that the reduction should go in the opposite direction: ¬P should

be de�ned as �n∼P meaning that at time n it will necessarily be the case in

the future (in the sense explained above) that ∼P . Then the principle that is

refuted by choice sequences is just �nP ∨�n∼P which is not a law of classical

logic but is, nonetheless, a principle that the Platonist believes holds for all

mathematical propositions. Then, of course, the question is whether lawless

choice sequences should be admitted as mathematical objects. That question

we return to in Section 2.7.

2.6 Fictional objects

A likeness between �ctional objects and lawless choice sequences is another

thing that may induce one to claim that bivalence fails for the latter. For

it is natural to think that it does for the former. The idea is that since

Shakespeare does nowhere in Hamlet specify Hamlet's height, Hamlet is an

incomplete object not having a speci�c height, so a sentence such as �Hamlet

is 5 foot 7� is neither true nor false. And it seems that the crucial feature of

�ctional objects which is responsible for this incompleteness is that they are

creations of our minds. Since choice sequences share this feature, the analogy

argument goes, they too are incomplete and defy the principle of bivalence.

17�The number r is not rational, in spite of its irrationality being absurd�.
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I think it is possible to develop a convincing argument against this conclu-

sion which has the same structure as in the previous section, namely by going

through the various di�erent accounts that there are of �ctional objects and

showing that only those according to which bivalence does hold, are meta-

physically acceptable to a Brouwerian. This would be somewhat repetitive,

however. As an alternative argumentative strategy is available, I will only

focus on that. I will grant, for the sake of argument, that �ctional objects are

incomplete, and instead attack the claim that there is a relevant analogy.

In (van Atten 2007, 95) where van Atten draws the analogy, he notes that

there is one important di�erence. While �a choice sequence is something we

literally bring about in the process of its construction�, a �ctional object is

just a piece of make-believe. When Brouwer's creating subject thinks of a new

choice sequence and imagines that it has 4 as its �rst element, then a choice

sequence is actually created and it is literally true to say that it has 4 as a term.

But, when Shakespeare writes about Hamlet and informs his readers that he

is a prince of Denmark, Hamlet does not spring into existence (at least not as

the actual person he is according to the story, but one might follow Thomasson

(1999) in saying that Hamlet qua �ctional object is created in that instant)

and it does not become true that Hamlet is a prince. This di�erence really

is crucial and is more so than van Atten appears to acknowledge. The only

aspect of this di�erence that he takes note of, is that whenever a property is

indeterminate of some choice sequence, that property may later be determined,

while the indeterminacy of �ctional objects is lasting.

The indeterminateness of �ctional objects steams from a certain tension. We

evaluate sentences about �ction pretending we are in a world di�erent from

our own. On the one hand we think of this world as a complete world, just

as our own. Hamlet is not a weird science �ction novel about an incomplete

world. It is about a world which is metaphysically like our own, with just a few

facts about what goes on in Elsinore changed. On the other hand Shakespeare

has not made it complete, i.e. he has not supplied us with a truth value for

every possible proposition about it. So while the proposition that Hamlet has

a height must be true according to the �ction, because Hamlet is portrayed

to be a normal human being, there is no truth value for the proposition that

Hamlet is 5 foot 7, nor any other proposition attributing a speci�c height to

Hamlet.

The objects of �ction are incomplete in the sense that they do not have a �full

set� of properties. However, this is essentially a comparative claim. What a

full set is, depends on real-world objects. It is only because actual human

beings have a height that there is something for Hamlet to be missing.
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Now try to draw the analogy between �ctional objects and choice sequences

with this in mind. The result is that the incompleteness of a choice sequence

not yet having a speci�c number as its 17th term owes the status of being in-

complete to a comparison with some real sequences. But, it is of course not an

acceptable consequence for a Brouwerian that we must postulate the existence

of some sequences that are more real than those that are mental constructions.

This is especially because they must then not only be characterized by all hav-

ing a speci�c 17th term, but also by having a speci�c n'th term for every n.

That is, they must be actually in�nite.

Not having a speci�c 17th term is only an incompletness in the same sense as

Hamlet's not having a speci�c height, if the proposition that the sequence has

a 17th term follows from being a sequence as the proposition that Hamlet has

a height follows from his being a human being. However, it does not according

to the intuitionistic conception of sequence. It only follows that if a sequence

does not yet have a 17th term then there is an intention to create one at some

point in the future. The idea that all real sequences have an in�nity of terms

seems to be another residue of classical doctrine just as the unwillingness,

noted above, to allow for the truth value of a sentence changing between true

and false.

We must conclude that the analogy is not valid, at least not for the purpose

of arguing for the failure of bivalence. When �ctional objects and choice se-

quences are considered alike by being incomplete, it is a con�ation of two very

di�erent senses of �incomplete�: not having �as many� properties as real objects

and not having stopped changing.

2.7 Consequences for the continuum

Let us investigate the consequences of our conclusion for the concept of real

numbers and our understanding of the continuum.

In his early years, before he came up with the idea of free choice sequences,

Brouwer was of the opinion that the continuum is a primitive notion. It cannot

be constructed out of entities of another type. Speci�cally, it can not be iden-

ti�ed with a set of points. The continuous and the discrete are described as

complementary and equally basic aspects of the Primordial Intuition (Brou-

wer 1907). Points (and numbers) can only be used to analyze a pre-given

continuum by being the endpoints of the subintervals into which it can be

decomposed.18 One reason that a continuum cannot be a set of points is that

18This is the view originating with Aristotle (1930).



2. Free choice sequences 57

the available points are only those that can be identi�ed with rational num-

bers or de�nable real numbers, i.e. lawlike sequences, which implies that there

is only a denumerable in�nity of them and hence not enough to exhaust the

continuum (Brouwer 1913).

The intention with lawless choice sequences is that they can improve on the

situation:

[Intuitionism] also allows in�nite sequences of pre-constructed ele-
ments which proceed in total or partial freedom. After the aban-
donment of logic one needed this to create all the real numbers
which make up the one-dimensional continuum. If only the pre-
determinate sequences of classical mathematics were available, one
could by introspective construction only generate subspecies of an
ever-un�nished countable species of real numbers which is doomed
always to have the measure zero. To introduce a species of real
numbers which can represent the continuum and therefore must
have positive measure, classical mathematics had to resort to some
logical process, starting from anything-but-evident axioms[. . . ] Of
course, this so-called complete system of real numbers has thereby
not yet been created; in fact only a logical system was created, not
a mathematical one. On these grounds we may say that classi-
cal analysis, however suitable for technology and science, has less
mathematical reality than intuitionist analysis, which succeeds in
structuring the positively-measured continuum from real numbers
by admitting the species of freely-proceeding convergent in�nite
sequences of rational numbers and without the need to resort to
language or logic. (Brouwer 1951b, 451�452)

There are two ways to interpret this. The stronger interpretation is that Brou-

wer now does, in one crucial respect, exactly the same as the classical mathe-

matician, namely �nding a non-denumerable totality of points with which to

identify the continuum.19 True, there are still major di�erences in what that

totality of points looks like, but the extensional conception of the continuum

as a collection of points is now adopted by Brouwer. Let me �rst explain why

Brouwer is wrong, under the assumption that this is indeed his postulate.

In addition to the alleged indeterminate character of Brouwer's reals which

results in the continuum not being completely ordered (the disjunction of x <
y, x = y and x > y does not hold for every pair of real numbers x and y),

one other di�erence should be noted. Where the classical reals (interpreted

Platonistically as Brouwer does) by virtue of the hierarchical nature of the set

19Or rather, since Brouwer disputes that the classical mathematician succeeds and I dispute
that Brouwer does, the formulation must be more careful: what Brouwer believes he does is
the same as what the classical mathematician believes she does.
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theoretical universe must all exist for the set of them to do the same, Brouwer

only commits himself to the possibility of constructing each of his reals. They

do not all have to exist prior to them being collected in the species of all reals.

His continuum is the totality of all possible convergent sequences of intervals.

This di�erence notwithstanding, my claim is that Brouwer's approach fails.

Here is why. Our analysis of the constitution of choice sequences shows that

there are not uncountably many of them. For we can not individuate them by

how the entire process of choices goes. They can only be individuated by who

the creating subject is, starting time and, at any given time, the created initial

segment and adopted restrictions. Hence there are always just �nitely many

of them, i.e. the class of choice sequences is potentially, countably in�nite.

At �rst sight, this objection to Brouwer may seem to ignore the just mentioned

di�erence between Brouwer's and the classical reals. So, the Brouwerian might

answer: yes, we can only ever have initiated the construction of a �nite number

of lawless choice sequences, but there are non-denumerably many di�erent ways

they might go � non-denumerably many di�erent possible routes, so to speak.

However, this is incorrect. The actual in�nite, non-de�nable sequences (assum-

ing for the moment that they exist) do not correspond to possible routes for

potentially in�nite choice sequences. For �possible� means �can be taken�, and

the entire route corresponding to a Platonistic non-de�nable sequences can

never be taken. Only initial segments of those sequences can ever be taken.

This may get clearer if we make use of a nice metaphor of Posy's (1976, 98�

99). He likens choice sequences to the route of a bus traveling on a forking

highway. The journey of the bus can be seen from di�erent perspectives. First,

there is the perspective of a passenger in the bus seated with his back to the

driver so that he can only see the route already traversed. Second, there is

the perspective of the bus driver which in addition to the knowledge of his

passenger has an intention of where to travel from his present position. Third,

and last, there is the perspective of a pilot looking down on the bus and the

road system from a helicopter hovering above, seeing both the traveled path

and the roads ahead.

Given the rejection of actual in�nity there is no helicopter perspective. For

lawless choice sequences there are no roads before they have been traveled.

Actually in�nite roads are no less actually in�nite than completed in�nite

travels. The only legitimate perspectives are the passengers and the drivers

and in the former case that is a �nitely extensional perspective and in the

latter the perspective is �nitely extensional and �nitely intensional.

For the bus driver or the creating subject, there is an in�nity of possibilities.

But one must not con�ate an in�nity of possibilities with the possibility of
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in�nity. The conclusion is that choice sequences cannot do the same work as

the classical set of real numbers allegedly do.20

That brings me to the weaker interpretation of the quote. In the strong in-

terpretation, I assumed that Brouwer's claim was that his reals make up the

one-dimensional intuitive continuum. However, an alternative reading is that

they just make up the mathematical continuum, i.e. that they make up the

best possible model we can have of the intuitive continuum. That is consistent

with this model falling short of being a perfect one-to-one model. With this

interpretation, Brouwer makes a more modest claim, namely that the lawless

sequences adds to the model something which the lawlike sequences cannot

accomplish.

However, our analysis in the previous sections reveals that also this more

modest thesis is mistaken. The addition of lawless sequences does not improve

on the mathematical treatment of the continuum. For notice that for a choice

sequence, which is a real number, when n terms have been chosen, all the

information of those n terms can, without loss, be summed up as an interval

to which the limit of the sequence is now restricted. Therefore, it makes no

di�erence for the theory of real numbers if we identify the development

t1: ⟨−1/2, intention to expand⟩
t2: ⟨−1/2,1/4, intention to expand⟩
t3: ⟨−1/2,1/4,−1/8, intention to expand⟩

with

t1: ⟨[−3/2,1/2] , intention to change⟩
t2: ⟨[−1/4,1/2] , intention to change⟩
t3: ⟨[−1/4,5/24] , intention to change⟩21

At any given time, the mathematical content of a lawless sequence equals an

interval with rational endpoints. The creating subject is just changing his

mind about which interval to use, and, if it wasn't for the rather arbitrary

details of the de�nition of �real number�, each choice is one that could have

been made initially. The implication is that free choice sequences do nothing

that rational numbers cannot do.

20Also Brouwer's notion of �spreads� can only be understood in two ways: either Platonic,
as a completed tree of possible routes, or Aristotelian, as a potential in�nity of �nite ways
to subdivide an interval. There is no middle ground.
21The interval for t3 is this intersection: [−1/2 − 1−1,−1/2 + 1−1] ∩ [1/4 − 2−1,1/4 + 2−1] ∩
[−1/8 − 3−1,−1/8 + 3−1]; similarly for the interval for t2.
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Add to this that they have rather strange logical properties: tertium non datur

doesn't fail, but �necessity-tertium non datur � (�nP ∨�n∼P ) does and some

properties are unstable. Then it seems that it would be best to avoid free

choice sequences in mathematics. One way to do this would be to deny that

they are legitimate mathematical objects. However, I do not think that is

a reasonable move. Assuming a commitment to mathematical objects being

mental and temporal (which we will make in Chapter 4), it would be very

di�cult to draw the demarcation line between the kind of objects we would

like to include and lawless choice sequences in a principled way.

Instead, I suggest that we just ignore the lawless sequences and only consider

law-like sequences when we do analysis. And if the Brouwerian questions our

right to do so, then he has a demarcation problem. For if free choice sequences

have to be admitted into analysis, what is to rule out free choice-and-change-

of-mind sequences? The creating subject can embark on creating a sequence,

choose the �rst ten terms and then replace the �rst term with something else.

And he can claim that the sequence is self-identical over time with the same

right that he can claim that an ordinary free choice sequence is, for, recall,

that identity is based on nothing but the subjects intention to consider them

identical. Then hardly any property would be stable, which means that if

we follow Brouwer in only allowing ourselves to a�rm stably true sentences,

then we cannot state that �6 is the 1st term� even if it is (at present) and

we can never a�rm of a free choice sequence that it is a positive number.

The Brouwerian decides to not quantify over free choice-and-change-of-mind

sequences when he says �all real numbers� (otherwise real numbers would not

have the essential property of being arbitrarily approximatisable), so we can

decide not to quantify over lawless choice sequences.



Chapter 3

Brouwer's conception of truth

Let us now turn to lawlike sequences. Brouwer claims that bivalence also

fails for these sequences. A lawlike sequence is a potentially in�nite sequence

where the creating subject has imposed such strict restrictions on his own

future �choices� of terms that there exists exactly one possible choice for each

term. This existence claim has to be understood intuitionistically � so the

restriction must be formulated in such a way that it is e�ectively possible for

the subject to calculate the sole allowed term. That is, the restriction must

take the form of an algorithm. However, let us follow Brouwer in calling it

a �law�.

In order to illustrate Brouwer's claim, we can use the example mentioned at

the end of Section 2.5, i.e. the sequence γ = ⟨c1, c2, c3, . . .⟩ where the procedure
for deciding cn for a given n is as follows: Calculate the �rst n + 9 decimals

of π. If the sequence 0123456789 does not appear anywhere, let cn be equal

to (−1/2)n. If it does, let cn be equal to (−1/2)k1 , where k1 is the position of

the digit 0 in the �rst such appearance.

Brouwer's claim is that the proposition that the real number γ equals 0, is

neither true nor false. It would only be true if we had a proof that there are

no 0123456789-sequences in the decimal expansion of π, and it would only be

false if we knew of such a sequence.1 Assuming that it is true or false in the

absence of such knowledge amounts to assuming that the decimal expansion

of π has extra-mental existence.

The purpose of this chapter is to provide an interpretation of what exactly

Brouwer means by �true� when he makes this claim. That is, this chapter

1We actually do today: there is a 0123456789-sequence beginning at decimal number
17,387,594,880 as well as at several other, later positions (Wells 1986). But as Brouwer
(1951a) correctly points out, there will probably always be an ample supply of other ex-
amples that can be used instead. Hence, this is not really relevant, so we will just stick to
Brouwer's example.
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is purely exegetical (or perhaps more accurately: is an attempt at a rational

reconstruction). In the next chapter, this interpretation will be used as a basis

for criticizing Brouwer and for suggesting an alternative.

Before I present what I think is the correct interpretation of Brouwer, I will

discuss and reject three other possible interpretations. I do this not just for the

fun of shooting them down, but because my interpretation combines elements

from those three and is, therefore, best understood and motivated against the

backdrop of these erroneous alternatives. The �rst interpretation is that what

is true is only that which has actually been constructed. The second is that

not only actual but also all potential constructions can serve as truth makers.

(These �rst two alternatives are quite naïve and are not serious contenders

but they serve a purpose of stage setting.) And the third is that truth is

equated with proof. This third alternative has now become so entrenched

as an interpretation of Brouwer that a word of warning is in order so as to

forestall misunderstandings where it is read into the �rst two: The notion of

proof plays no role in the �rst two interpretations and �construction� is not

to be read as �construction of a proof�. Rather, �constructions� are of the

mathematical objects and relations between them that mathematical theories

are about, not of the proofs and theorems about them.

So much for introduction. Now we can get down to business and ask the

question of what notion of truth Brouwer applies as his alternative to the

rejected Platonic notion. In several places he gives rather explicit answers to

this question � answers which are nonetheless puzzling. Here is one:

[T]ruth is only in reality, i.e. in the present and past experiences
of consciousness. Amongst these are things, qualities of things,
emotions, rules (state rules, cooperation rules, game rules) and
deeds (material deeds, deeds of thought, mathematical deeds). But
expected experiences, and experiences attributed to others are true
only as anticipations and hypothesis; in their contents there is no
truth. (Brouwer 1948, 1243, original emphasis)

So Brouwer's o�cial theory is that truth consists in correspondence with ac-

tual constructions. However, at �rst sight it does not seem that he adheres

strictly to this credo. One thing that seems to be at odds with it, is his claim

that as soon as the subject has a decision procedure for a given proposition

then tertium non datur holds for it. Sticking to actual constructions as truth

makers, one should presumably say that only when the decision procedure has

been executed does the proposition gain a truth value. Another thing is that

the theorems that he states are typically like classical theorems in that they

cover an in�nity of cases even though, obviously, not all these cases can have
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been realized as actual constructions. So, it seems that Brouwer often relies

on potential rather than just actual constructions.

If that is the case then it appears easy to explain why Brouwer has felt the

pressure to do so. The claim that the �actualist� position commits you to, that

the proposition that, say, the one millionth decimal of π is 1, was not true at

Brouwer's age but only has become so since, is very weird. It is weird because,

by Brouwer's own admittance, it is determined in advance what the decimals

of this lawlike sequence are.2

So is the theory of truth which Brouwer actually believes in, that whatever is

determined in advance is true, i.e., that predetermined potential constructions

are su�cient for truth? No, Brouwer does not go nearly far enough in this

direction to warrant such an interpretation.3 For it is also determined in

advance whether there is a k1, and if there is, what value it has. So by that

standard it would be false, atemporally, that the limit of γ equals 0.

Framing the same point in terms of the popular example of Goldbach's Con-

jecture, it cannot be the case that it is �xed in advance for each n whether it

would be a counterexample to the conjecture, but not �xed in advance whether

such an n can be constructed. If we let P stand for the property of being a

Goldbach number and n range over the even integers greater than 2, Brouwer

claims that ∀n(P (n) ∨ ¬P (n)) is true but that ∀nP (n) ∨ ¬∀nP (n) is not.

That di�erence can not be accounted for if truth is a matter of predetermined

potential constructions alone, for the two propositions are about the same

potential constructions.4

Consistent reliance on potential constructions would make all truths about

lawlike sequences timeless and independent of the subject's knowledge and

would therefore be in con�ict with the temporality of Brouwerian truth and

in particular with the role played by possession of algorithms; when the sub-

ject acquires a means to �judge� a proposition, i.e. comes up with a decision

procedure for it, tertium non datur becomes valid for it (Brouwer 1952, 141).
2Brouwer also uses the word �predeterminate� for �lawlike� (Brouwer 1948, 1237). He also
writes that the �freedom in the generation of [a free choice sequence] may at any stage be
completely abolished [. . . ] by means of a law �xing all future [terms] in advance� (Brouwer
1954, 7).
3Even though he also commits explicitly to this second interpretation in writing, like he did
for the �rst: in his own copy of his dissertation he changed �bestaan in wiskunde betekent:
intuïtief zijn opbebouwd� to �bestaan in wiskunde betekent: intuïtief op te bouwen�, that is,
�existence in mathematics means: to have constructed intuitively� to �existence in mathe-
matics means: to be constructible intuitively� (van Dalen 2001, 134, footnote f).
4One way to analyze the concept of predetermination is with a counterfactual: if at time t2
the nth decimal of π is found to be m, then for any t1 < t2 it would have been the case that
if an agent had constructed the nth decimal at t1, it would have been m. Does Brouwer
deny this as the Kripkensteinian rule-following skeptic (see Section 4.3) does? I don't think
he does. He just refuses to recognize such facts of predetermination as truths, presumably
because he cannot locate a truth-maker for it within his anti-realist ontology.
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Neither actual constructions nor potential constructions can be made out to

be Brouwer's criterion for truth. Rather, he seems to be somewhere in be-

tween, relying on potential constructions when the subject has knowledge of

its �nitude in advance and otherwise insisting on actual constructions. That

di�erence can not be explained with mentalism alone. So if this intermediate

position is to be seen as more than an arbitrary compromise between con�ict-

ing sources of pressure, there must be some more fundamental truth criterion

in play which can explain the unequal demands on what kind of existence of

constructions is required.

Partly as an answer to this challenge, it has become common to interpret

Brouwer as equating truth with existence of proof, or as it is also been formu-

lated, to replace truth conditions with assertability conditions (Raatikainen

2004). There are certainly good textual reasons to believe that proofs play, at

least, some role in Brouwer's conception of truth. For one thing, the notion of

proof is employed in some de�nitions of concepts which we would not normally

consider to be about proofs (i.e. not a concept belonging to proof-theory):

Two mathematical entities are called di�erent, if their equality has
been proved to be absurd. (Brouwer 1952, 142, my emphasis)

A second reason is that the following two quotes are so alike that it is natural

to interpret Brouwer as considering them noting but rhetorical variations of

each other even though one has �true� where the other has �proved to be true�,

suggesting equivalence between them:

Correctness of an assertion then has no other meaning than that
its content has in fact appeared in the consciousness of the subject.
We therefore distinguish between:

1. true

2. impossible now and ever

3. at present neither true nor impossible

a. either with, or

b. without the existence of a method which must lead to
either 1. or to 2. (Brouwer 1951b)

[I]n mathematics no truths could be recognized which had not been
experienced, and that for a mathematical assertion a the two cases
formerly exclusively admitted were replaced by the following four:
1. a has been proved to be true; 2. a has been proved to be false,
i.e. absurd ; 3. a has neither been proved to be true nor to be
absurd, but an algorithm is known leading to a decision either that
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a is true or that a is absurd; 4. a has neither been proved to be
true nor to be absurd, nor do we know an algorithm leading to the
statement either that a is true or that a is absurd. (Brouwer 1955,
114, original emphasis)

It is clear that proofs are in some way constitutive of Brouwer-truth. Neverthe-

less, it cannot be correct to interpret him as identifying truth and existence of

proof. For that is exactly what he (1954) forcefully criticizes the formalists for

doing; they render mathematics meaningless by doing away with the content

that is being proved. The Brouwerian would ask rhetorically: if there is noth-

ing beyond the proofs, then what is it that is being proved? Trying to reduce

truth to proofs is to put the cart before the horse; there has to be something

more basic that proofs can be about. To prove something must be to show

that it is true. If there is no independent notion of truth, then the concept of

proof is taken as basic, and intuitionism is just a version of formalism.

Also, insofar as existence of proofs is admitted as partially constitutive of

truth in Brouwer's view, it must be with a careful understanding of what

proofs are. They cannot be understood as linguistic entities and they cannot

even be something that is �build� from logic, for mathematics is independent

of, and primary to, language and logic, according to an often repeated claim

of Brouwer's.5

An attempt at a precision of the interpretation of Brouwer as equating truth

with existence of proofs is what has become known as the �Brouwer-Heyting-

Kolmogorov interpretation� or �BHK interpretation� for short. It gives the

meaning of the logical connectives and quanti�ers by recursively stipulating

what counts as a proof of a sentence: a proof of φ ∧ ψ consists of a proof of φ

and a proof of ψ (and the conclusion); a proof of φ ∨ ψ consists of a proof of

φ or a proof of ψ; a proof of φ → ψ consists of a method for converting any

proof of φ into a proof of ψ; a proof of ¬φ consists of a method for converting

any proof of φ into a proof of a contradiction; a proof of ∃xφ(x) consists of an
object d, a proof that d is in the given domain and a proof of φ(d); and a proof

of ∀xφ(x) consists of a method for converting any object d in the domain into

a proof of φ(d).

(To this story must be added an account of what a proof of an atomic sentence

is. Such accounts are speci�c to the mathematical theory under consideration.

Arithmetic can be formalized in such a way that the only atomic sentences

are numerical equations, and then a proof of such a sentence of the form

a = b can be speci�ed as something that begins with identity statements of the

form a = a.)
5See, e.g., (1907, chapter 3), (1947) and (1952).
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There are two speci�c problems for the BHK interpretation in addition to the

already mentioned more general problems of the truth=proof interpretation.

The �rst is that the interpretation of the disjunction is not faithful to Brouwer.

He has it that tertium non datur already holds6 for a proposition φ when the

subject has a decision procedure for it, also prior to executing that procedure

and thereby obtaining a proof of one of the disjuncts of φ∨¬φ. But the BHK
interpretation does not allow us to assert that disjunction without being in a

position to assert one of the disjuncts.

The second is, as Dummett (2000, 269�270) points out, that the de�nition, as

it stands, is impredicative, because of the clauses for the conditional and the

universal quanti�er: A proof of φ → ψ is a certain operation on all possible

proofs of φ. We have no guarantee that we have a full grasp on what counts as

a proof of φ before we have a full grasp on what counts as a proof in general,

but that is just what is being de�ned.

I think the problem can be presented most forcefully in the form of a trilemma.

Either 1) it is �xed in advance of the recursion on the complex sentences what

counts as a proof of an atomic sentence or 2) it is not.7 The �rst case can

be subdivided into a case 1a) where these pre�xed proofs include some that

contain, as lines in the proofs, complex sentences, and 1b) where they do

not. In all three cases there are unacceptable consequences which can all be

exempli�ed with a proof concluding with modus ponens, i.e. a proof where the

antepenultimate line is φ, the penultimate is φ → ψ and the �nal line is the

atomic sentence ψ. In case 1a) this proof is valid independently of the BHK

recursion, so the proof stripped of its last line is a proof of φ→ ψ independently

of the BHK recursion, making it redundant. In case 1b) this cannot be a proof

of ψ, so no atomic sentence can be proved by modus ponens, which is absurd.

And in case 2) it is consistent with the BHK interpretation to stipulate that

ψ can be proved from φ no matter what these sentences are, for we can just

claim that the mentioned proof is a valid proof for ψ if we also claim that

the method to any proof of φ, add a line containing φ → ψ and then a line

containing ψ is a proof of φ → ψ, for that is then the method for converting

any proof of φ into a proof of ψ required by the BHK interpretation of the

conditional.

Dummett (1978a; 2000) has tried to improve on this situation by distinguishing

between �canonical proofs� and a weaker notion of proof. Canonical proofs are

some that never proceed via formulae that are more complex than the premises

6In his (1952) he writes that in this case �application of the principle of the excluded third
is permissible�; in his (1908) that it is �reliable as a principle of reasoning� (my emphasis).
7The case of arithmetic belongs, as explained, in the former category, but it is not clear
where other mathematical theories belong.
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and conclusion. On the other hand, informal proofs or �demonstrations�, the

kind of proofs that you typically �nd in a mathematical paper, are some that, in

principle, provide a method for obtaining a canonical proof. A disjunction may

therefore be assertable by virtue of a demonstration, which, when converted

into a canonical proof, would not only prove the disjunction but also one of the

disjuncts. The BHK interpretation is then taken to de�ne the weaker notion

of proof, while presupposing only the notion of canonical proofs, and then the

recursion is well-founded.

However, even if this works as a solution to the speci�c problems for the BHK

interpretation, it does not resolve the more general problems of interpreting

Brouwer as identifying truth and existence of proof. (But, it should be noted,

it was not intended as an exegetical thesis by Dummett.) Just splitting the

notion of proof into two di�erent notions of proof cannot do that job. When

I have nevertheless used the space to discuss it, it is because the idea has

similarities to the exegetical thesis I will propose. For, according to this,

Brouwer e�ectually splits the notion of truth into a strong and a weak variant.

The key, I believe, is to be found in one of the quotes above, namely the �rst

one in this chapter: expected experiences are true only as anticipations; in

their contents there is no truth. Here is a distinction between a strong notion

of truth, truth-in-content (TIC), and a weaker, truth-as-anticipation (TAA).

The strong notion is what allows Brouwer to claim that �truth is only in re-

ality�, i.e. TIC is correspondence to an actual construction. Not only is an

object, a, a construction, so is a property-ascription, P (a), and a reduction

to absurdity, ¬P (a) (Brouwer 1907). To take a simple example (not Brou-

wer's own), a natural number n is a construction consisting of n elements;

the property-ascription n is the sum of two primes is a one-to-one and onto

mapping of these n elements to the elements of two primes; and the reduction

to absurdity of the same property-ascription would consist in attempted con-

structions of such mappings between the n elements and all pairs of two primes

smaller than n that are executed as far as possible until �the construction no

longer goes� (p. 127). These mappings are themselves constructions, described

by Brouwer (1908) as the predicate being �embedded� into the object.

If, on the other hand, the subject employs (intuitionistic) logic to deduce new

truths from existing truths, the new truths are not necessarily TIC. It is just

that the subject now knows how to make them true. He has an algorithm

which will produce the truth-maker for the sentence and he knows in advance

of executing it, that it will have that result. In other words, he can anticipate

the TIC of the sentence; it is TAA:
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[T]here is a system of general rules called logic enabling the subject
to deduce from systems of word complexes conveying truths, other
word complexes generally conveying truths as well. [...] This does
not mean that the additional word complexes in question convey
truths before these truths have been experienced [...] (Brouwer
1948, 1243, original emphasis)8

Let us consider a few examples. The proposition that 17 is an odd number,

is TIC when a mapping between 17 and two copies of 8 and a unit has been

constructed. The proposition that 1010 + 1 is an odd number, however, is not

TIC (except if the subject has been extremely industrious) but it is TAA if

just the subject knows how to construct that number and a mapping between

it and two copies of 5 ⋅ 109 and a unit. Further, assuming that our subject is

not an expert on prime numbers, �1010 + 1 is prime� is neither TIC nor TAA.

He does have an algorithm for deciding the proposition (let us assume that he

knows that much), but he does not know the result of executing it in advance.

That brings us to the case of complex sentences: �1010 + 1 is prime or 1010 + 1
is composite� is TAA, for the subject has an algorithm which he knows will

make the sentence TIC. He just doesn't know how; he does not know which

disjunct will become TIC, so neither of the disjuncts are TAA.

Based on this discussion, we can give the �rst part of a more precise, recursive

formulation of when a sentence is TIC and TAA, respectively:

� P (a) is TIC i� P has been embedded into a

� ¬P (a) is TIC i� all options for embedding P into a have meet an obstacle

� φ∨ψ is TIC i� φ is TIC or ψ is TIC (and the conclusion has been drawn)

� P (a) is TAA i� an algorithm has been made which can make P (a) TIC

� φ ∨ ψ is TAA i� an algorithm has been made which can make either φ

TAA or ψ TAA

Here �algorithm� means a method that not only is �nite and would have the

stated result if executed, but is known to the subject to be �nite and to lead to

that result. The notion of �embedding� is one that I will leave relatively vague

as it is. Let me just make it clear that the idea is that TIC is an ontological

rather than epistemological notion; when the subject has made a sentence TIC,

he has not veri�ed that it is true, he has made it true. (TAA on the other

hand is connected with veri�cations.)

The clauses for conjunction are obvious, as are the generalizations of the clauses

for the atomic sentences to predicates or arity more than 1:
8See also (Brouwer 1952, 141).
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� φ ∧ ψ is TIC i� φ is TIC and ψ is TIC

� φ∧ψ is TAA i� an algorithm has been made which can make both φ and

ψ TAA

� P (a1, . . . , an) is TIC i� P has been embedded into ⟨a1, . . . , an⟩

� ¬P (a1, . . . , an) is TIC i� all options for embedding P into ⟨a1, . . . , an⟩
have meet an obstacle

� P (a1, . . . , an) is TAA i� an algorithm has been made which can make

P (a1, . . . , an) TIC

For existential quanti�cation the clauses are analogous to those for disjunction:

� ∃xφ(x) is TIC i� φ(a) is TIC for some object a in the domain

� ∃xφ(x) is TAA i� an algorithm has been made which can construct an

object a in the domain and make φ(a) TAA

The special BHK-interpretation of the universal quanti�er and conditionals

�ts perfectly into the present interpretation on the side of TAA:

� ∀xφ(x) is TAA i� an algorithm has been made which can turn any object

a for which it is TAA that a is in the domain, into the TAA of φ(a)

� φ→ ψ is TAA i� an algorithm has been made which can turn TAA of φ

into TAA of ψ

Truth-in-content is an extensional notion, and therefore the clause for TIC of

a universally quanti�ed sentence must be as follows:

� ∀xφ(x) is TIC i� all the objects a in the domain have been constructed

and φ(a) is TIC for them all

This has the consequence that when the domain is in�nite, a universally quan-

ti�ed sentence cannot be TIC, only TAA.

It is a more delicate matter what to say about TIC of conditionals. One

thought would be that intuitionistic conditionals can only be understood in

the algorithmic sense of the BHK-interpretation. In that case, TIC should

never be attributed to conditionals. Insofar as it should, being an extensional

notion, it seems most reasonable to understand it in terms of the classical

de�nition of the conditional:

� φ→ ψ is TIC i� ¬φ is TIC or ψ is TIC
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Adopting this clause implies accepting the inference from ¬φ to φ→ ψ for any

φ and ψ. There is no indication in Brouwer's writings that he does; see (van

Atten 2009) (where it also noted that Heyting, Kolmogorov, Troelstra, van

Dalen, Martin-Löf and Dummett do accept it).

The TIC of ¬φ has only been de�ned for atomic φ so far, which must be reme-

died. But again, the extensionality of TIC, i.e. the requirement of correspon-

dence with actual constructions, settles the issue unequivocally. A negation

of a complex sentence being TIC must be understood in terms of the classical

equivalence with a sentence where negations have narrower scope, so as to

be reducible to the already de�ned TIC of atomic sentences and negations of

atomic sentences:

� ¬¬φ is TIC i� φ is TIC

� ¬(φ ∨ ψ) is TIC i� ¬φ is TIC and ¬ψ is TIC

� ¬(φ ∧ ψ) is TIC i� ¬φ is TIC or ¬ψ is TIC

� ¬(φ→ ψ) is TIC i� φ is TIC and ¬ψ is TIC

� ¬(∃xφx) is TIC i� all the objects a in the domain has been constructed

and ¬φa is TIC for them all

� ¬(∀xφx) is TIC i� ¬φa is TIC for some object a in the domain

That just leaves us with TAA of negated sentences to be de�ned:

� ¬φ is TAA i� an algorithm has been made which can turn TAA of φ into

some construction and the obstruction of the same construction

This interpretation of Brouwer is, in a sense, a combination of the three pro-

posed interpretations I discussed above: truth as actual construction, truth

as potential construction and truth as proof. Both TIC and TAA consist of

actual constructions. TIC consists in the actual construction of �things� and

�qualities of things� in the language of the quote at the beginning of this chap-

ter, and TAA consists in the actual construction of �rules�. As such, both

notions of truth are tensed. On the other hand, the admittance of the weaker9

notion of truth, TAA, is due to a reliance on potential constructions. It is a

trust in the possibility of, to a certain extend, predicting the properties of not

yet e�ected constructions which justi�es anticipated-truth when there is not

yet truth in the strong ontic sense. And �nally, TAA is identi�ed with the

existence of proof. But it is in a sense of proof where it does not necessarily

9For any sentence φ, φ being TIC implies that φ is TAA. The TAA-making algorithm is the
�empty� algorithm that is vacuously executed.
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have to be a linguistic entity. Rather, an intuitionistic proof is a method for

producing the truth-maker of the given sentence (although the subject needs

to know that the method does that, and that knowledge may be the result of

a proof in the traditional sense of the word). In this way, TAA is grounded

in TIC. TAA of complex sentences is de�ned in terms of TAA of simpler sen-

tences, and TAA of atomic sentences is de�ned in terms of TIC. Thus, there

is no problem of impredicativity as in the BHK interpretation.

That a sentence is TAA means that it would become TIC if the algorithm in

question were executed along with the algorithms, corresponding to simpler

sentences, thereby produced and the... etc. etc. down to atomic sentences.10

However, when there are universal generalizations over in�nite domains or

negated existential claims over same involved, that task is impossible, as it

consists in the execution of an in�nity of algorithms. Still, the grounding of

TAA in TIC is not thereby nulli�ed, for any given �nite part of the in�nite

conjunction, which such a sentence amounts to, can be realized as TIC.

The present interpretation accommodates both the 1951b and the 1955 quota-

tions above, without having to resort to the highly problematic �reduction� of

truth to existence of proof. The four possibilities for the status of an assertion

a in the former quote are 1) that a is TIC, 2) that ¬a is TIC, 3a) that neither
a nor ¬a is TIC but a ∨ ¬a is TAA, and 3b) that neither a nor ¬a is TIC and

a ∨ ¬a is not TAA. In the latter quote, the four possibilities distinguished are

1) that a is TAA, 2) that ¬a is TAA, 3) that neither a nor ¬a is TAA but

a∨¬a is TAA, and 4) that neither a nor ¬a nor a∨¬a is TAA. These are dif-

ferent categorizations but they both give four possibilities which are mutually

exclusive and collectively exhaustive.

With this interpretation we can also explain how Brouwer can deny in the

π example that it was true at his time that a k1 exists without denying the

predetermination of the sequence of decimals of π. For any claim about the

value of a speci�c decimal, the subject can anticipate �nding the answer, in

the sense that he knows that he will �nd it within a preknown number of

construction steps if he goes through the appropriate procedure. If he starts

looking for a k1 by searching through the decimals one by one, he can not

anticipate �nding one, he can merely hope for it.

Even though the issue has already been touched upon, let me explicate the

consequences for the semantics of disjunctions. The case of TIC is simple: if a

10In the case of universally quanti�ed sentences, conditionals and negations there are prereq-
uisites for doing so: for universally quanti�ed sentences one would need to have constructed
the entire domain; for conditionals (assuming that the above clause for TIC of such is
adopted) one would need the TAA of the antecedent; and for negations one would need, per
impossibile, the TAA of the negated sentence.
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disjunction is TIC then at least one of the disjuncts is too. But a disjunction

can be TAA without any of the disjuncts being so. In particular τ ∨ ¬τ is

TAA if the subject has a decision procedure for τ , but if he does not know in

advance on which side the procedure will come out, neither τ nor ¬τ will be

TAA. This allows Brouwer to state that

Each assertion τ of the possibility of a construction of bounded
�nite character in a �nite mathematical system furnishes a case of
realization of the principle of the excluded third (Brouwer 1948,
1245)

For in a �nite system the procedure �try all possibilities� is a decision proce-

dure; it will result in either τ or ¬τ becoming TIC and a fortiori TAA. So TAA

does not distribute over disjunctions, but it is, so to speak, distributable over

disjunctions with a little work. That is, a disjunction being TAA at a given

point in time does not imply that either of the disjuncts is TAA at that time,

only that one of the disjuncts can be made TAA by executing the algorithm

that makes the disjunction TAA.

We are not in possession of a decision procedure for Goldbach's Conjecture,

∀nP (n), and hence ∀nP (n) ∨ ¬∀nP (n) is not TAA. But for each n, we do

have such a procedure for P (n), making P (n)∨¬P (n) TAA. So the algorithm
consisting of �plugging� the given n into that procedure, is the algorithm which

turns any object in the domain N into the TAA of P (n)∨¬P (n), required for

∀n(P (n) ∨ ¬P (n)) being TAA.

It may also be worth explicitating why the clause for TAA of a disjunction

does not read �φ ∨ ψ is TAA i� an algorithm has been made which can make

either φ TIC or ψ TIC�. Let again τ be a decidable but undecided proposition.

Then this proposition, where n ranges over the natural numbers, is TAA (for

anyone in possession of the decision procedure and aware of the following):

∀n(τ ∧ n = n) ∨ ∀n(¬τ ∧ n = n). By deciding τ , one of the disjuncts becomes

TAA but not TIC, for the latter would presuppose a completed construction

of all the natural numbers.

3.1 An equivalence in propositional logic

In this section, and the following two sections, I will confront the interpretation

with three examples of Brouwerian mathematics to show how it can account

for them. The three examples are those that van Atten in his (2012) brings

forward in defense of the claim that the �B� does rightly belong in the name

�BHK-interpretation�, and I have copied his subsection headings.
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The �rst is Brouwer's proof of the logical law ¬¬¬A ↔ ¬A. This proof van

Atten uses (sections 2.2 and 3.1.1) to argue against an understanding of con-

ditionals A → B as meaning just �A ∧B with the extra information that the

construction for B was obtained from that for A� (which would be a conse-

quence of the truth-as-actual-construction interpretation11):

The argument begins by pointing out that A → B implies that
¬B → ¬A [. . . ] It would not have been possible for Brouwer to
make this inference if at the time it would have been among his
proof conditions of an implication to have a proof of the antecedent,
as then a proof of A → B would lead to a proof of B and thereby
make it impossible to begin establishing the second implication by
proving its antecedent ¬B.

Obviously, this is not an argument speci�cally for the BHK-interpretation,

only against the mentioned alternative. Its conclusion is also consistent with

the present interpretation, where ¬¬¬A↔ ¬A is TAA. Or rather: ¬¬¬A↔ ¬A
is TAA for anyone who has understood the following proof (or one like it), as

it provides a method of turning the TAA of ¬¬¬A into the TAA of ¬A and

vice versa:

We �rst prove the TAA of A → ¬¬A. That is done by providing a method of

turning TAA of A into TAA of ¬¬A. So assume that A is TAA. TAA of ¬¬A
is an algorithm for turning TAA of ¬A into a construction and the obstruction

of the same construction. So assume also that ¬A is TAA. Use that to turn the

TAA of A into a construction and the obstruction of the same construction.

Discarding the second assumption, we have the TAA of ¬¬A. And by also

discarding the �rst assumption, the TAA of A→ ¬¬A is reached.

Second, we prove that the TAA of A → B implies the TAA of ¬B → ¬A.
Assume the antecedent and the TAA of ¬B. The following is an algorithm

for turning the TAA of A into a construction and the obstruction of the same

construction, i.e. the TAA of ¬A: use the �rst assumption to turn the TAA

of A into the TAA of B and then use the second assumption to turn that into

a construction and the obstruction of the same construction.

A special case of the �rst proposition proved is that ¬A→ ¬¬¬A is TAA. And

the two propositions together imply the TAA of ¬¬¬A → ¬A. The algorithm
which makes ¬¬¬A↔ ¬A TAA is then simply the concatenation of these two

algorithms.

This example is one that the BHK-interpretation and the �two truths� inter-

pretation can account for equally well. I will argue that the next two are some

where the latter does better than the former.
11And a possible interpretation of the TIC of A→ B, instead of the one above.
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In this section I have considered a single logical theorem. But, the more

general claim that this interpretation is complete with respect to intuitionistic

�rst order predicate logic is also true. It is true in the following sense: for each

axiom and inference rule of that logic there is a certain (quite simple) proof,

such that the axiom/inference rule is TAA for anyone who has understood

the proof.

3.2 The proof of the Bar Theorem

The next example considered by van Atten is the proof of the Bar Theorem

(Brouwer 1924a; 1927; 1954; 1981), which can be stated thus: if B is a decid-

able bar on a spread, then B contains a well-ordered thin bar. I will begin this

section by explaining the terms used in this formulation, before interpreting

Brouwer's proof of, and his comments on, it in the light of the two truths. As

this will get somewhat abstract and perhaps di�cult to follow, the section will

conclude with a toy example to make matters more concrete.

For present purposes we can de�ne a spread as a species of tuples of natural

number, in that we consider the empty tuple as a such, which satis�es the

following. First, it is decidable for any tuple whether or not it is in the spread.

Second, if ⟨a1, . . . , an⟩ is in the spread then so is ⟨a1, . . . , an−1⟩. Third, if

⟨a1, . . . , an⟩ is in the spread then there exists (in the intuitionistic sense of the

word) a natural number an+1 such that ⟨a1, . . . , an, an+1⟩ is also in the spread.

A tuple ⟨a1, . . . , an⟩ is called an ascendant of a tuple ⟨a1, . . . , an, . . . , an+m⟩ in
the spread, and the latter is called a descendant of the former. If m = 1 the

modi�er �immediate� may be added.

It is helpful to mentally picture a spread as a tree in which each tuple is a

node with all its immediate descendants as nodes immediately below it. An

in�nite route from the root, i.e. the empty tuple, downwards then corresponds

to a choice sequence.12

A bar is a subspecies of a spread such that every choice sequence �in� the spread

has an initial segment (one of the nodes it goes through) in that subspecies.

A bar can be pictured as an area stretching the entire breadth of the tree so

that every choice sequence must pass through it. It was discovered by Kleene

and Vesley (1965) that for the theorem to hold it must be assumed that the

bar is decidable, which is to say that it is decidable whether a given tuple is

in it or not.

12At this point the reader can temporarily ignore the critique of choice sequences in the
previous chapter, for the in�nitude of the sequence is not really relevant here.
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For the purpose of being a bar, such an area does not need to be deeper than

one node; hence the notion of a thin bar which is a bar such that for any tuple

in it, no ascendant or descendant of it is also in the bar.

Well-orderings are de�ned inductively. A one-element species is a well-order-

ing, and if A0, . . . ,An or A0, . . . are disjoint well-orderings, then their union,

equipped with the following ordering, is also a well-ordering: x < y if either x

is from an Ai and y is from an Aj such that i < j or x and y are from the same

Ai and ordered x < y therein. The Ai's are called �constructional subspecies�

of the resulting well-orderings.

For this analysis, there is one speci�c detail about the ontology of well-order-

ings that is important. Brouwer (1981, 44) demands that the Ai's are in

the �available stock� of already constructed well-orderings, before they can

be used to construct a larger well-ordering. This may suggest a demand for

strict �bottom-up� construction, which is misleading. First of all, one should

of course remember that if a well-ordering is constructed out of in�nitely many

other well-orderings, then the in�nity is potential, so they cannot all have been

previously constructed. It follows that the existence of these well-orderings

must be understood as true-as-anticipation.

In other words, Brouwer accepts that the larger-scale structure is constructed

prior to the smaller-scale details of that structure. This conclusion is reinforced

by an example from (Brouwer 1981, 49), where a well-ordering is constructed

with the aid of a �eeing property (see Section 1.5). Pretend that such a

property is given and let k be the (hypothetical) least natural number with

that property. Further, let Ai be an ω-sequence for i < k but just a one-element

species for i ≥ k. Brouwer takes these Ai's to be acceptable building blocks

for a well-ordering. So, not only can the building blocks be constructed after

the house, we can also be largely ignorant about the shape and size of these

building blocks.

This brings us to the end of the explanation of what the theorem says. We

can turn to the interpretation of its proof.

The Bar Theorem has the form of an implication, and the proof turns on

considerations of how possible proofs of the antecedent can be manipulated

into a proof of the consequent. This �ts with the BHK-interpretation. But,

what Brouwer means by �proof� in that context is very di�erent from the

normal understanding of the word.13 When his non-standard use of the word

is taken into account, the two truths interpretation can explain Brouwer's proof

13See (Sundholm and van Atten 2008) regarding Brouwer's use of the words �proof�, �demon-
stration�, and �argument� and their equivalents in German and Dutch.
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in a way that is more detailed and less prone to misunderstandings than the

BHK-interpretation.

Brouwer writes that any proof of the antecedent can be expanded into a so-

called canonical proof. Such a canonical proof is an in�nite (if the part of the

tree �above� the bar is) mental construction with a structure that is itself a

well-ordering. When the word �proof� is taken in the normal sense, that is a

ba�ing claim.14 How can something persuade us of the truth of a proposition

if it is in�nite and therefore unsurveyable? And how can Brouwer be certain

that a proof must be expandable into the form he describes? The word �proof�

(or �demonstration�) must be understood di�erently:

Intuitionistically, to give a demonstration of a mathematical the-
orem is not to produce a certain linguistic object, but to produce
a mental mathematical construction (or a method to obtain one,
which method is of course also a mental mathematical construc-
tion) that makes the corresponding proposition true. Therefore,
the requirement, for a demonstration that the consequence

A is true ⇒ B is true

holds, of a method that transforms any demonstration that A is
true into one that B is true, is really the requirement of a method
that transforms any mathematical construction that makes A true
into one that makes B true. (Sundholm and van Atten 2008, 61)

This is correct, but also easy to misunderstand: is a �mathematical construc-

tion that makes A true� not an in�nite structure which can never be completed

and thereby ready for being transformed into a mathematical construction that

makes B true? With the present interpretation, with its distinction between

two ways that A and B can be true, we can make this more precise and avoid

the confusion. A proof of the implication is a method for transforming the

TAA of A into the TAA of B, not a method to transform the actually in�-

nite structure that would make A TIC into the actually in�nite structure that

would make B TIC.

Getting to the speci�c details of the proof of this theorem, the antecedent says,

when interpreted in the appropriate intuitionistic way, that when I construct a

choice sequence in the spread, I will at some point construct an initial segment

that is in the bar; that I will be able to determine that the initial segment is

in the bar, when it is; and that I know in advance that it will happen within a

14For example, relying on a truth=proof interpretation of intuitionism, Epple (2000) comes
to the conclusion that the proof of the Bar Theorem does not live up to Brouwer's own
epistemological standards.
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calculable number of construction steps.15 The antecedent is of the ∀∃-form;

for all choice sequences in the spread, there exists an initial segment of it that

is in the bar. So the antecedent being TAA means that for any given choice

sequence, an initial segment of it that is in the bar can be constructed, i.e. that

the instance of the universal generalization for the speci�c choice sequence can

be made TIC. It is hopeless to expect that we could know how any possible

proof, in the normal sense of that word, that could make that antecedent

TAA would look like, but it is trivial to see how this TIC is accomplished:

just construct the terms of the choice sequence one after another, and each

time run the decision procedure for bar-membership on the resulting initial

segment. The in�nite mental construction, that Brouwer misleadingly calls a

canonical proof, is the (unaccomplishable) TIC of all the instances, i.e. of the

antecedent.

Therefore, what Brouwer means by �canonical proof� is very di�erent from

how Dummett understands the term. The reasoning that makes the subject

know in advance of constructing a choice sequence, that it will meet the bar,

is not the thing that can be transformed into a canonical form. Rather, the

canonical form is the imagined in�nite result of applying an ability to construct

a certain kind of objects (choice sequences hitting bars) in all possible ways,

and that ability can be transformed into an ability to construct another kind

of objects (well-orderings).

Let me elaborate in a way that brings us closer to Brouwer's own formulations.

He calls elements of the bar �secured� nodes, while nodes above are �unsecured�

but are �securable� when it is established that all choice sequences through

it hit a secured node. The securability of a node is accomplished through

induction from below; if all the immediate descendant of a given node are

securable, then that node is securable. That is the induction step and is called

an �elementary inference�. The securability of nodes high up in the tree, in

particular the root, is reached through repeating such steps; if the tree is large

enough, in�nitely many of them. In his formulations Brouwer indulges in the

fantasy that we could actually go through the entire construction process,

bottom-up, but of course he should not be interpreted literally; it is a mere

façon de parler. Actually, we can just construct �nitely many nodes, top-

down, and must have some means, independently of actually constructing all

the nodes that contributes to their securability, of knowing that all choice

15The last bit is not precise: �the algorithm in question may indicate the calculation of a
maximal order n1 at which will appear a �nite method of calculation of a further maximal
order n2 at which will appear a �nite method of calculation of a further maximal order n3

at which will appear a �nite method of calculation of a further maximal order n4 at which
the postulated node of intersection must have been passed. And much higher degrees of
complication are thinkable.� (Brouwer 1954, 13)
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sequences through them will hit the bar. Such means are of course arguments

or, in the normal meaning of the word, proofs.

The strong similarities between constructing well-orderings and establishing

securability of nodes should now be clear. First of all, obviously, the elements

of the thin bar correspond to the one-element well-orderings, and the nodes

above it to the well-orderings that are constructed from smaller well-orderings.

In addition, for both securability and well-orderings, the literal reading of

Brouwer suggests a strict bottom-up constructional process in which a brick

in the wall can only be added, when all the bricks it rests on are in place; but

instead it must be seen as a potentially in�nite top-down process where the

status of being securable/being a well-ordering steams from prior knowledge

that whatever choice sequence/series of constructional subspecies of construc-

tional subspecies of constructional subspecies etc. the subject may actually

construct, it will hit the bar/bottom out in a one-element well-ordering.

The ability that the subject must posses (and know to posses) in order for

the antecedent to be TAA is virtually the same as the ability that makes the

consequent TAA. Hence, proving the Bar Theorem is actually trivial. To prove

the TAA of the implication, what is needed is a way of turning any method

for constructing any given �part� of the truth-maker (�TIC-maker�) of the

antecedent into a method for constructing any given part of the truth-maker

of the consequent. But doing the former is essentially the same as doing the

latter, so any method for the former is almost a method for the latter, making

the �turning� of the one into the other trivial.

Brouwer himself notes this triviality in (1927, original text: 63fn7, English

translation: 460fn7). That is a comment that can be explained with the two

truths interpretation, and this explanatory success is, I believe, a point in

its favor.16

Now to the promised toy example. In Figure 3.1 is the top part of a spread

where the natural numbers allowed are restricted to 1 and 2. It is equipped

with a very simple �ve element bar which contains a well-ordered three element

thin bar. According to the bottom-up story, the subject should construct

the well-ordered thin bar by �rst constructing ⟨1,1⟩,17 ⟨1,2⟩ and ⟨2⟩, then
constructing (⟨1,1⟩, ⟨1,2⟩) and �nishing with ((⟨1,1⟩, ⟨1,2⟩), ⟨2⟩) (the brackets
indicate constructional subspecies). Of course that is quite feasible in this

16The above discussion could perhaps have been improved in precision with a formalization
of the Bar Theorem. But it is not clear to me that such a formalization is possible. An
attempt at a formalization can be found in (Kleene and Vesley 1965, 52), but there the
consequent is rendered as a principle of backward induction, which I think is unfaithful to
Brouwer.
17I omit �intention to expand�.
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Figure 3.1

case, the thin bar being �nite. But for the purpose of the toy example, let

us pretend that the subject (for whatever mundane reason) only has time to

do two construction steps, and let that restriction simulate �nitude. Then

the existence of the bar and the existence of the well-ordered thin bar cannot

become TIC.

But he can construct any part of the bar, top-down. For instance the �rst

construction step could result in {⟨1⟩⋆, . . .} and the second in {⟨1,2⟩, . . .} (the

curly brakets indicate a species (as a bar is) with some intensional criterion

of membership not displayed; the dots indicate that it is incomplete qua ex-

tensional object; and the star indicates that ⟨1⟩ is not itself an element of the

bar but has to be further developed). The ability to ��ll out� any part of this

species and the knowledge that any �starred element� can be developed into an

element of the species no matter which natural number (here 1 or 2) is chosen

in the following steps is what constitutes the TAA of the antecedent of the

Bar Theorem.

That ability and knowledge is, as noted, virtually the same as the the ability

and knowledge that constitutes the TAA of the consequent. Here the corre-

sponding top-down construction of a part of the well-ordering has as its �rst

step (⟨1⟩⋆, . . .) and as its second ((. . . , ⟨1,2⟩), . . .). The di�erence is simply

that in the construction of (parts of) the well-ordered thin bar, some extra

structure from the construction process is preserved.

3.3 Ordering axioms

The last example (van Atten 2012, section 3.1.3) is concerned with Brouwer's

de�nition of so-called �virtual orderings�. These are given through �ve axioms,

of which one, serving as example, will be su�cient for present purposes, so

let us take the simplest, number �ve: �From r < s and s < t follows r < t�.
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The following comment of Brouwer's, concerning these axioms, is cited by van

Atten as a con�rmation of the BHK-interpretation:

The axioms II through V are to be understood in the constructive
sense: if the premises of the axiom are satis�ed, the virtually or-
dered set should provide a construction for the order condition in
the conclusion.

Van Atten claims that �[t]his is a clear instance of the clause for implication in

the Proof Interpretation�. But the BHK-interpretation renders the axiom as

�any proof of r < s and s < t must be convertible into a proof of r < t�. How-
ever, the operative words in Brouwer's comment are �satis�ed� and �provide a

construction� which are more speci�c than the ambiguous �proof�. The �two

truths� interpretation captures this comment much better. For the TAA of

the axiom, i.e.

TAA of (from r < s and s < t follows r < t)

is equivalent to

TAA of (r < s and s < t) can be turned into TAA of r < t,

which is the same as

TAA of (r < s and s < t) can be turned into an algorithm which makes

r < t TIC.

This seems to be a much more reasonable explicitation of the comment.

3.4 Two truths versus BHK

In the original 6th century Indian version of chess, the winning criterion was

to actually capture the opponent's king. Only later did the Persians amend

the rules so that a player would win already when the king was made check

mate (Davidson 1949). The original version is the most intuitive and it would

be di�cult to imagine that the game could have been invented directly in the

Persian form; the concept of check mate is di�cult to explain except when

done in terms of what would happen in the next round of the game. On the

other hand, the Persian �contraction� of the game makes good sense, as that

�nal round is trivial and not worth actually executing.

This makes for a nice analogy: TIC is like actually capturing the king, while

TAA corresponds to making the king check mate or, more generally, being in

possession of a winning strategy for the Indian version of the game. If the

existence of such a winning strategy is common knowledge to the players, then
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there is no point in actually completing the game � but only by reference to the

possibility of actually capturing the king does the winning strategy make sense.

My objection to Brouwer and his interpreters is that they have not made this

distinction clearly. In chess, the �contraction� of the game is so simple that

anyone presented to the Persian version can easily see the connection with the

Indian version, and therefore think like an Indian while acting like a Persian.

The �contraction� of TIC to TAA is quite complex. Therefore any introduction

to intuitionism should begin by clearly explaining TIC and only then move on

to the less basic and more abstract concept of TAA, which is what the proofs

in intuitionistic papers make contact with.

The clauses of the BHK-interpretation are especially objectionable in their

con�ation of the two kinds of truth: the clause for disjunction is only correct

for TIC; while the clauses for the conditional and the universal quanti�er are

only correct for TAA. I think the BHK-interpretation is comparable to early

analysis in that only experts can interpret the interpretation the right way.

Anyone learning about it for the �rst time is almost bound to get it wrong.

There is an obvious problem for my interpretation and the critique of BHK

that needs to be considered, namely that Brouwer explicitly endorsed Heyting's

interpretation:

[W]hile preparing a note on intuitionism for the Bulletin of the
Royal Academy of Belgium, I was pleasantly surprised to see the
publication of a note of my student Mr. Heyting which elucidates
in a magisterial manner the points that I wanted to shed light upon
myself. I believe that after Heyting's note little remains to be said.
(van Dalen 2013, 607)

There are a couple of reasons why I do not attribute much weight to this

endorsement. First, given that formalism is not something Brouwer cares

for, he could easily have made that remark without really having thought it

through. And even if he did, it is a commonplace that you �nd out that a given

formulation of your position, that you �rst thought to be perfectly precise,

turns out to be improvable. Also, Brouwer's stamp of approval on Heyting's

clauses was within the context of a discussion about whether intuitionism

introduces a third truth value. Thus, the approval can be mostly due to the

fact that Heyting got that part right.

3.5 Lawless choice sequences revisited

By qualifying the notion of �algorithm�, we can extend the two truths inter-

pretation to also cover choice sequences that are not lawlike. Let us return to
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the example of the choice sequence α, of which only the �rst three elements

have been chosen and the sole restriction on future choices is that they must

be natural numbers. Consider the following example sentences:

1. The 17th term of α is 99.

2. The 17th term of α is not 99.

3. The 17th term of α is 99 or the 17th term of α is not 99.

Neither of these sentences is TIC. Brouwer would say that the last sentence

is true (Brouwer 1908), while the �rst two sentences are not. With the right

understanding of �algorithm�, this �ts with the given clauses for TAA.

With an understanding of the word that is too rigid, sentence 3 would come

out as not TAA. The procedure that makes the sentence TIC is the one de-

scribed by the instruction �choose additional 14 elements of α�. On a narrow

understanding this is not an algorithm because it involves choices.

On the other hand, we cannot replace �algorithm� with something as broad as

�method�, for that would over generate sentences that are TAA: the subject

has a method for making sentence 1 TIC, namely deciding to pick 99 as the

17th element.

The right understanding is most clearly explained with a story about two

subjects. One subject is the generator of α and chooses one new element

thereof, whenever he is prompted to do so by the second subject. The second

subject is the one for which sentence 1 and 2 are not TAA while sentence 3 is.

She has an algorithm, in the strict sense of the word, that will make sentence 3

TIC (by making one of the disjuncts TIC), namely simply 14 times in a row,

ask the �rst subject for a new element of α. Hence, sentence 3 is TAA for her,

while sentences 1 and 2 are not, as she has no in�uence on what numbers are

chosen.

Having to refer to two di�erent subjects is not in the spirit of Brouwer who

emphasizes the individual. It can be avoided if we imagine a subject who

manages to keep his tasks separate � that is, when he chooses elements of

a choice sequence, he chooses freely within the explicit restrictions he has

imposed on himself without being in�uenced by the judgments he himself has

previously made about that same choice sequence.

We have thus reached a more precise formulation of the intuitionist stipulation

discussed in Section 2.5. The added precision does not, however, substantially

a�ect the force of the critique that this stipulation about the semantics for

lawless sequences is arbitrary. It does not, because we can similarly criticize
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the more general adoption of TAA as the most extensive notion of truth for

being unnecessarily restrictive. That is the agenda for the next chapter.



Chapter 4

Non-veri�cationist

constructivism

So, according to Brouwer there are these two kinds of truth and no others.

What has actually been constructed makes for truth makers for a strong kind

of truth. And when the creating subject has foreknowledge about how future

constructions will go, that can, in a limited way, provide for a weaker kind of

truth. But no even weaker form of truth exists. There is no sense in which

it is true that 2 plus 2 equaled 4 prior to the birth of the �rst human being.

That is his highly counterintuitive claim.

I hope that with the attempt in the previous chapter to make it more explicit

than it has been previously what Brouwer's thesis is, it is possible to make

it clear, not only what is so counterintuitive about the claim, but also why

it does not follow from the constructivist ontology. That, and formulating an

alternative that gets us closer to classical mathematics, cf. the overall goal as

described in the introduction, is the aim of this chapter.

A possible alternative position would be that there are only truth-in-content

and nothing beyond it. That is the conclusion one will be compelled to come

to if one thinks any true mathematical sentence must have a truth maker and

such a truth maker can only consist of the actual existence of the structure

described in the sentence and, furthermore, that such structures can only be

provided by the mind. Brouwer does not claim that. He believes that truthful

things can be said about future constructions.

Another possible alternative position is that everything about lawlike future

constructions is true in advance. This is the thesis that I will defend below, and

there I will formulate it more precisely. For now, an example should su�ce:

the Goldbach Conjecture is true or false at present because it is determined in

84
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advance for each even number what would happen if one were to construct it

and test whether it is the sum of two primes.

Brouwer holds an intermediate position, according to which future construc-

tions can do the job of truth makers in some cases but not in all. The big

question is why. It is not di�cult to see what may attract someone to one of

the two alternative positions, but it is not immediately obvious why one would

think that the criteria for being a truth-as-anticipation are exactly those that

mark the limit of truth. Why is it that tertium non datur holds for assertions

about a huge not-yet-constructed structure just because it is �nite, while it

does not for Goldbach's Conjecture even as late as the second before someone

were to �nd a counter-example?

Brouwer himself does not provide much of a reason. His philosophical argu-

ments are mostly negative, directed at the Platonist. His o�cial alternative

platform is that of extreme ontological austerity, which points in the direction

of the TIC-only position. His departure from that position seems to be due

to a strong objectivist intuition. However, arguments are lacking in order to

explain why we should only follow the objectivist intuition some of the way

and not continue ahead to the other alternative position mentioned above.

Hence, we must look elsewhere. The only developed explicit argument for

this intermediate position is Dummett's, so the �rst section of this chapter

is devoted to him. However, Wittgenstein's rule following considerations may

also seem to o�er the hope of a justi�cation. So to him I will turn in Section 4.3.

Finding these arguments unsuccessful, I develop the alternative position in

Sections 4.2 and 4.4 and the following chapters. The aim is to drive a wedge

between constructivism and veri�cationism and show that, if nothing else,

the project of developing a non-veri�cationist constructivism is at least as

legitimate as the Platonist and the intuitionist projects � although, of course,

that is to understate the ambition.

4.1 Dummett's argument from meaning constraints

Very much contrary to the spirit of Brouwer's philosophy, Dummett's argument

in defense of Brouwer takes for its point of departure the social character of

language: as meaning must be shared between the members of the language

community, the meaning of a sentence cannot go beyond what it is possible

to learn for a member of that community. Dummett tries to convince us that

the classical semantics for mathematics cannot be learned and is therefore no
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semantics at all but just a mere illusion of understanding among those who

practise classical mathematics.1

Dummett contrasts two overall types of theories of meaning for natural lan-

guage. The �rst is the kind of theory according to which the meaning of

sentences is given by their truth conditions, as suggested by Frege (1884),

Russell (1919) and the early Wittgenstein (1921).2 We will follow Dummett

in calling this �truth-conditional semantics� (even though this is somewhat

misleading as we have just interpreted Brouwer as understanding sentences in

terms of not just one but two sets of conditions for when a sentence is true, and

because, according to Dummett, any semantics can be formulated in terms of

what it takes for a sentence to be true, if we understand that broadly enough).

This kind of semantics is characterized by having truth-conditions that are

independent of what is and can be known. The second is the kind of theory

that de�nes meaning via conditions of justi�cation. Dummett's argument for

intuitionism consists of two sub-arguments. The conclusion of the �rst is that

truth-conditional semantics has the absurd consequence that language cannot

be learned at all. The conclusion of the second is that justi�cationist theo-

ries of meaning cannot deliver classical semantics for mathematics but only

intuitionist semantics.

The sub-argument for the unlearnability of a language with truth-condition-

al semantics is a quite simple one from two premises. One premise is that

the relation of dependency among sentences learned by an individual has to

be well-founded: someone can learn the meaning of a new sentence by hav-

ing it explained with other sentences, but of course, those sentences have to

be antecedently grasped by the individual, so learning language in childhood

cannot commence with linguistic explanations. The second premise is that

truth-conditions are given in the form of instances of the T-schema:

(TP) �P� is true i� P

Therefore, the argument goes, understanding the sentence P presupposes un-

derstanding the sentence3 TP, so, by generalization, every indicative sentence

can, according to the truth-conditional theory of meaning, only be understood

if some other sentence is already understood, which by the �rst premise leads

1This section is based on Dummett's (1978b), (1991a), (1991b), (1993), (2000) and (2006).
Of central importance are chapters 4 and 5 of (2006), the paper �The Philosophical Basis of
Intuitionist Logic� in (1978b), chapters 14 and 15 of (1991b) and the �rst paper in (1993).
2For an historical overview, starting with these thinkers and covering the development up
to the present, see (Stanley 2008).
3Dummett (2006) holds to a �language before thought� doctrine, but claims that a similar
argument goes through on a �thought before language� doctrine as well.
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to the absurdity that no one understands any indicative sentence.4 In contrast,

according to Dummett, justi�cationist theories of meaning are in line with the

demand for well-foundedness, because they give the meaning of sentences, not

in terms of a theoretical knowledge like the truth-conditional theories, but as

a practical ability to decide when asserting the sentence has been justi�ed.

However, the conclusion of the second sub-argument states, a justi�cationist

basis can only deliver intuitionistic logic for mathematics. For a universal

quanti�cation, to take that example, over an in�nite domain would only satisfy

the law of bivalence, according to the justi�cational meaning-theories, if there

was a method that would always deliver a veri�cation or a falsi�cation when

executed. Obviously, there is no such method, but Dummett considers an

appeal that his opponent might make to counterfactual circumstances where

there is one: The classical logician may bring in supertasks in her defense, if

she concedes that the logical rules have to be warranted on a justi�cationist

foundation. She could do that by claiming that what it means for a universally

quanti�ed sentence to be true is that if an agent with super-human powers were

to go through all its instances, he would verify each one, and conversely what

it means for it to be false is that if that agent worked his way through all the

instances, he would falsify at least one. (Set aside the issue that we are then

limited to cases where the agent can enumerate the instances and where each

instance is decidable.)

Dummett counters this defense of classical logic with a general point about

subjunctive conditionals, namely that if they are true or false, they cannot be

so in a basic, or as Dummett puts it �barely�, way; they have to be true/false in

virtue of the truth/falsity of some other, categorical statement. The classical

logician is here identifying the truth of the classical universal quanti�cation

∀xφ(x) with the truth of a subjunctive conditional of the form S → ∀xφ(x),
where the antecedent is a statement to the e�ect that the supertask has been

carried out, and the consequent has to be interpreted as, in our terminol-

ogy, truth-in-content. She also identi�es the falsity thereof with the truth of

4The most explicit formulation of this argument can be found in (Dummett 2006), where he
�rst writes that the �truth-conditional account of sense makes a grasp of sense unequivocally
into the possession of a piece of theoretical knowledge� (p. 48, original emphasis) and then
continues �if we attempt to explain the understanding of a sentence as consisting in the
possession of a piece of knowledge about that sentence, our explanation is circular: we are
trying to explain grasping one proposition � that asserted by the sentence � in terms of
judging another � the proposition that the sentence is true under such-and-such conditions
� to be true� (p. 50). Another, slightly less explicit, formulation can be found in (Dummett
1993, 43�46). My focus on this argument is due to Dummett's own assertion that �neither
the objection arising from the manifestation nor that arising from the acquisition of the
knowledge is central. The central objection is the circularity of a truth-conditional account�
(2006, 55). The discussion of circularity is coupled with discussion of acquisition in this
section; manifestation is brie�y discussed in footnote 12.
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S → ∃x¬φ(x). Dummett grants that if the supertask is executed, then either

∀xφ(x) or ∃x¬φ(x) will become TIC, i.e. he accepts

S → ∀xφ(x) ∨ ∃x¬φ(x).

But from this the disjunction of the two previous formulae,

(S → ∀xφ(x)) ∨ (S → ∃x¬φ(x)),

does not follow � not according to intuitionistic logic. Whether ∀xφ(x) or

∃x¬φ(x) will become TIC might depend on speci�c circumstances about the

execution of the supertask. To assume that it is determined in advance which

one, is to assume that there is already a truth of the matter in advance of

actually going through with the supertask. And that is exactly what is at

issue. The classical logician has mounted a circular defense and assumed that

there is some categorical, Platonic truth in which to ground the truth-value of

the subjunctive conditional.

Let us turn to evaluating this complex argument for intuitionistic logic being

the strongest meaningful logic for mathematics. The overall premise that

meaning must be learnable is, I think, uncontroversial.5 So we have to get

our hands dirty on the details of the sub-arguments.

The second sub-argument connects back to issues discussed in Chapters 1

and 2. If it is not determined in advance, by pre-existing facts, what the result

of executing the supertask will be, that does not necessarily lead to failure of

bivalence. However, for two reasons, that is not very important here. First,

even if bivalence can be upheld, the classical logician does not get what she

hopes for. The alternative suggested in Chapter 2 was that ∀xφ(x) should be

true if present facts makes it necessary that each instance would become TIC,

and false if not. This implies that if it is neither necessary that each instance

would become TIC, nor necessary that the negation of one of the instances

would become TIC, then ∀xφ(x) is false. This is again consistent with an

execution of the supertask actually resulting in all of the instances becoming

TIC while we have counted the sentence as false. That is not what the classical

logician was bargaining for. Second, and more importantly, Dummett in this

case grants the classical logician more than I think we should, namely that

5The idea of division of linguistic labor (Putnam 1975) does not con�ict with this premise,
since it does not challenge the claim that for every expression, someone must have learned
its meaning. Kripke's (1980) causal theory of the meaning of proper names does imply that
there could be names for which it is impossible to identify the referent, because there are no
longer any traces of the �initial baptism�. However, that does not imply that the meaning

cannot be learned. And, at any rate, the semantics of proper names is not relevant to the
present discussion.
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supertasks are metaphysically possible. Being unwilling to accept that possi-

bility, I have to agree with the conclusion of the second sub-argument: relying

on a justi�cationist basis is not a viable route to a logic that is stronger than

intuitionism.

The problem is instead with the sub-argument concerned with truth-condi-

tional semantics, more speci�cally the second premise, that truth-conditions

are given by sentences of the form TP. It is true on one interpretation, but not

on the interpretation that would make the argument valid. It is true that if

someone were to write down an explicit truth-conditional meaning-theory for

English, it would contain or imply the sentence TP for each English sentence P.

But it is not necessary for a speaker of English, in particular a child learning

the language, to explicitly know TP in order to understand P. The truth-

conditions are �given� to the theorist in the TP form but do not have to be so

�given� to the language user.

Dummett confounds the distinction between, on the one hand, theoretical and

practical knowledge and, on the other, explicit and implicit knowledge.6 The

knowledge needed to understand a truth-conditional language is theoretical

in that it is about what has to be impersonally satis�ed for P to be true,

while a justi�cation-conditional language requires practical knowledge from

its speakers, i.e. knowledge about what the speaker has to accomplish in order

to be in a position to assert P. However, this aboutness is not relevant to

the argument. What is relevant is what sentences a language user needs to

understand prior to understanding P, and TP is not among them. It su�ces

to have the implicit grasp of TP that consists of being able to correlate the

left-hand side and the right-hand side.

The sentence just before this one is prone to misunderstanding: in order to

correlate the left-hand side and the right-hand side of TP does the speaker not

still need to understand both �`P' is true� and P before being able to under-

stand P, implying non-well-foundedness? This possibility of misunderstanding

is due to the di�culty of formulating the T-schema; or rather the di�culty of

formulating that version of the T-schema which is central to truth-conditional

meaning-theories. The di�culty has to do with the fact that this version is

intended to relate language to a non-linguistic reality, but for purposes of dis-

cussing it we have to formulate it all in language.

Instantiating the variable P with �the star has �ve vertices�, and assuming we

are in a context where the denotation of �the star� is clear, we can distinguish

three things: 1) The sentence �`the star has �ve vertices' is true�, 2) the sen-

tence �the star has �ve vertices� and 3) the state of a�airs that the star has

6See in particular (Dummett 1993, 46) and (Dummett 2006, 57�58).



4. Non-veri�cationist constructivism 90

�ve vertices. To emphasize the non-linguistic character of 3, let us symbolize

it with the pictogram �☀�. What a speaker of a language has to be able to

relate in order to understand the sentence �the star has �ve vertices� is 2 and 3.

We could write it like this:

(T1
⋆) The star has �ve vertices i� ☀

The problems with this formulation are that T1
⋆ is ungrammatical in the use

of �☀� and that the distinction between meta- and object-language has only

been hinted at with the use of italics and not made explicit. If we have to be

both correct and explicit, we have to formulate the same thing like this:

(T2
⋆) �The star has �ve vertices� is true i� the star has �ve vertices

And now it may seem like we are relating 1 and 2 instead of the intended 2

and 3.

The only requirement for understanding the sentence �the star has �ve vertices�

according to truth-conditional meaning-theories is that the language user can

correlate (I use this imprecise word in order to avoid the phrase �is true� and

again risking a confusion of 1/2 with 2/3) that sentence with ☀, i.e., he must

be committed to having the same epistemic and doxastic attitudes towards

both sides of the biconditional. He does not have to understand the sentence

T2
⋆ including the biconditional and the words �is true�. He needs implicit

knowledge of T2
⋆, but that implicit knowledge can be gained long before the

explicit knowledge that T2
⋆ itself is true. The implicit knowledge is typically

gained at the age of 3 or 4, I guess, while the explicit knowledge is only

attained when the speaker is able to re�ect on his own language use � perhaps,

indeed, not before he takes a course in the philosophy of language. There is

no circularity here to threaten well-foundedness and learnability.

Of course, rejecting this charge of circularity does not bring us all the way to

having established that it is possible to convey ☀ to a child learning English,

which it has to be for a truth-conditional theory to be correct. How it actu-

ally happens is a highly non-trivial question for cognitive science, but that it

happens draws overwhelming prima facia support from the fact that almost ev-

eryone would claim to grasp it (Dummett being one of the few exceptions, even

though his extensive discussions of truth-functional semantics strongly suggest

that he actually does understand it, making his writings about it come danger-

ously close to constituting a performative contradiction). The burden of proof

is certainly on Dummett and he is not very successful in shouldering it. In

particular, contra (Dummett 1993, 15) it is not presupposed that it is possible

to entertain the thought that☀ obtains prior to learning the sentence �the star
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has �ve vertices�. It would be a controversial assumption, and therefore fair

game for Dummett, to presuppose that it is possible to think independently of

language. But it is perfectly consistent with truth-conditional semantics and

the demand for well-foundedness that the understanding of the sentence and

the grasp of ☀ is attained simultaneously by the child.

Reading Dummett, one gets the impression that he is implicitly subscribing

to a tabula rasa paradigm of the human mind, so that a child can only come

to grasp what can explicitly be explained to it by a teacher, with no aid of

the child's innate mental capacities. Let us assume that a given child has

learned to verify that a star placed in front of it has �ve vertices and so

far understands the sentence �the star has �ve vertices� according to this

justi�cationist semantics. We can further assume that the child understands

other fragments of English, but also only in a justi�cationistic way. Then it

seems correct to say that it is impossible to explicitly explain a stronger truth-

conditional meaning of those sentences to that child. That is, veri�cation-

transcendent truth-conditions cannot be de�ned from justi�cation-conditions.

But it also seems clear that the child brings something to the table him- or

herself.7 At an early age we form the idea of the permanence of physical

objects, i.e., when we see our mother on one occasion and then again later, we

come to believe that she existed outside our �eld of vision in the meantime.

That is an act of abstraction from mere sense-impressions that we are somehow

able to e�ectuate, and psychological experiments indicate, according to (Carey

2009, chapter 2), that an assumption of an innate idea of the permanency of

objects is necessary to explain that process. Using that power of abstraction,

the child should be able to move from the idea of veri�ed �ve-verticed stars over

the idea of unveri�ed �ve-verticed stars to the idea of unveri�able �ve-verticed

stars, relying only partially on help from a teacher.

I do not doubt that a species of creatures that is only able to understand a

language with a justi�cationist semantics is possible. But believing that that

species is the human species seems to be a gross underestimation of the role

of abstraction, analogy and innateness in the language learning process.

For these reasons I reject Dummett's argument for intuitionism.8 That leaves

the Brouwerian with a Wittgensteinian defense, to which I will return in Sec-

tion 4.3.9

7Chomsky (1971) argues that a child's innate mental capacities must be quite extensive for
language acquisition to be possible (in general that is, i.e., quite independently of the special
case that is here in dispute).
8With that verdict I side with the majority. For like-minded attacks on Dummett, see, e.g.,
(Williamsom 2007, afterword) and (Devitt 1983).
9Dummett also gives a second argument for intuitionistic logic in (Dummett 1991a, chapter
24), concerned with inde�nite extendability (see (Heck 1993) and (Clark 1998) for discus-
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4.2 Truth as potentiality

Even though the task does not constitute the major challenge he claims, Dum-

mett has left us with a question that needs an answer. Having rejected actual

in�nity in Chapter 1, we cannot take an understanding of the universal (re-

spectively the existential) quanti�er on a par with conjunction (respectively

disjunction) and extend that to the in�nite case. The in�nite is essentially

non-extensional, while the child's �rst understanding of a universally quan-

ti�ed sentence surely happens with an example where all the instances are

surveyed. How is the understanding of the quanti�ers generalized from there?

When a child has learned to understand ∀xφ(x) in the context of �nite domains

by checking them all, it is a small accomplishment � the kind of accomplish-

ment I would claim, contra Dummett, that a human child can achieve on its

own � to realize that if it is told that some sentence of the form ∀xφ(x) is

true, it can be inferred that if any random object a in the relevant domain

is picked out, it must be the case that φ(a), and conversely that the truth

of ∀xφ(x) follows from it being the case that whenever a random object a is

chosen, it must be the case that φ(a).10 That is, that ∀xφ(x) is equivalent

to �necessarily, for any object a in the domain, φ(a)�.11 This modal semantics

for the universal quanti�er is one that is not only learnable, but also gives a

stronger logic than intuitionism when generalized to the in�nite case, and is

not, in the case of mathematics, dependent on Platonism.12 Consider, in addi-

tion to truth-in-content and truth-as-anticipation, a third kind of truth, which

we can call �truth-as-potentiality� or �TAP� and give the following de�nition

(to be amended below) together with �false-as-potentiality� or �FAP�:

� P (a1, . . . , an) is TAP if it is possible to make P (a1, . . . , an) TIC

sion). Inde�nite extendability will be discussed in Section 5.9 and on page 207.
10As a high level of formal precision is not called for here, I am using �a� both in the object
language and the meta-language.
11The universal quanti�er �gures in the explanans, making this explanation circular. This
means that the explanation cannot be used to convey understanding of the quanti�er to
someone who does not already grasp it. But that is not the point; in fact I have already
stated that I believe that to be impossible to do through de�nitions. Instead the project is
to supply an ontological underpinning to justify the established use of language, as far as
such a justi�cation can be given (it will be clear later that I think some revision is needed
when we go beyond arithmetic).
12With this semantics, understanding of the universal quanti�er can also be manifested, as
Dummett demands; see his (1978b, 224�226), (1991b, 314�316) and (1993, 46). Say that
person A is convinced (for whatever, perhaps irrational, reason) that the sentence ∀nφ(n)
with a quanti�er that ranges over the natural numbers is true. If person B informs A
that B has written a natural number N on a slip of paper and asks A if he is willing to
bet on N satisfying φ with odds N ∶ 1 without being told what N is, A manifests his
classical understanding of ∀nφ(n) by accepting the bet. (This example depends on every
element of the domain being nameable, but that is an assumption I accept for independent
reasons below.)
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� P (a1, . . . , an) is FAP if it is possible to make ¬P (a1, . . . , an) TIC13

� φ ∨ ψ is TAP if φ is TAP or ψ is TAP

� φ ∨ ψ is FAP if φ is FAP and ψ is FAP

� φ ∧ ψ is TAP if φ is TAP and ψ is TAP

� φ ∧ ψ is FAP if φ is FAP or ψ is FAP

� φ→ ψ is TAP if φ is FAP or ψ is TAP

� φ→ ψ is FAP if φ is TAP and ψ is FAP

� ¬φ is TAP if φ is FAP

� ¬φ is FAP if φ is TAP

� ∀xφ(x) is TAP if necessarily for any possible object a satisfying the

criteria for being in the domain, if the sentence φ(a) is formulated, it is
TAP.

� ∀xφ(x) is FAP if it is possible to formulate a sentence φ(a), where a
satis�es the criteria for being in the domain, which is FAP.

� ∃xφ(x) is TAP if it is possible to formulate a sentence φ(a), where a
satis�es the criteria for being in the domain, which is TAP.

� ∃xφ(x) is FAP if necessarily for any possible object a satisfying the

criteria for being in the domain, if the sentence φ(a) is formulated, it is
FAP.

There are quite a few aspects of TAP that need to be commented on. I will

restrict myself to the case of arithmetic here; the case of set theory is discussed

in the next chapter and the rest of the dissertation. Further, the challenge from

rule following skepticism will be ignored for the moment and treated in the

next section.

Truth-as-potentiality provides for an arithmetic which is equivalent to clas-

sical arithmetic. For example, it is either necessary that for each natural

number n, if the sentence �if n is an even number larger than 2, then there

exist two prime numbers of which n is the sum� is formulated, then it is TAP,

or possible to formulate some sentence of that form which is FAP. In the �rst

case Goldbach's Conjecture is true-as-potentiality, in the second it is false-as-

potentiality. That this is so relies crucially on the fact that every object in the

domain of arithmetic is named, so that every instance of a quanti�ed sentence

13Below, the notion of TIC will be revised, and in that connection the dual notion of
falsity-in-content (FIC) will be introduced. Then the slight awkwardness of de�ning FAP of
P (a1, . . . , an) in terms of the TIC of its negation can be avoided: P (a1, . . . , an) is FAP if it
is possible to make P (a1, . . . , an) FIC.
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is itself a sentence. That way, �modal quanti�cation� over sentences that can

be formulated is equivalent to quanti�cation over a Platonic domain (as can

be seen from a trivial induction).

This equivalence is gained in such a way that no assumption of actual in�nity

is needed. It is not assumed that all the natural numbers exist, for we just

rely on what would be the case for each one if it were to be constructed or its

name formulated. It is also not assumed in the case of a quanti�ed sentence

that all its in�nitely many instances exist, for, again, the truth value is based

on what would happen if they were formulated. And �nally, we have not by

this recursive de�nition de�ned an actual in�nity of sentences to be TAP. The

clause �φ ∧ ψ is TAP if φ is TAP and ψ is TAP� is short for �φ ∧ ψ would be

TAP if formulated, if φ would be TAP, if formulated, and ψ would be TAP,

if formulated�, and similarly with the other clauses. Existence of sentences is

also not to be understood Platonically but simply means that someone has

formulated the sentence.

It must also be noted that we gain the equivalence even though we are, just

like Brouwer, locating the truth makers in the austere ontology of mental con-

structions: TAP is, just like TAA, grounded in the possibility of TIC. It is true

that we are to a larger extent relying on merely potential mental constructions.

But also Brouwer relies to some extent on potential constructions, and we have

found no convincing argument to make us believe that the limit of what they

can support is given by TAA and not TAP. TAA and TAP are alike in the way

that a sentence may be either without being capable of being TIC, because it

is about an in�nity of cases. The di�erence between TAA and TAP is that

the former requires some foreknowledge on the part of the creating agent that

TAP does not. But that extra epistemic requirement is not forced upon us

by the choice of a mentalistic ontology. It really is extra and, to repeat, we

have found no good argument why we should yield to it and not accept the

possibility of veri�cation-transcendent truth.

The theory that I have brie�y presented here and will develop in the remain-

der of this dissertation is a constructivistic theory in the strict sense of that

word, but not in the sense it has acquired. I am a constructivist in the sense

that I believe that the truth makers of a true mathematical sentence must

be constructable (individually, not necessarily collectively). According to the

established meaning of �constructivism�, one must further believe that the con-

structibility must be known, if a sentence is to be true. Thus the established

position should be called �veri�cationist constructivism�, and the more general

label should be used in a broader sense.
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For reasons that will be discussed in Section 4.4, I claim that mathematics is

about temporal processes and that truth-in-content therefore has the strongly

temporal character which implies that 2+2 = 4 was not true in that sense before

anyone had constructed it. However, the pre-theoretic concept of truth is more

naturally identi�ed with truth-as-potentiality than with truth-in-content, and

the former is not temporal to the same degree as the latter. A sentence cannot

change its status from being not-TAP to being TAP or vice versa in time;14

if it ever becomes true, it is so from the beginning. TAP is temporal to some

degree, though, for on pain of letting in actual in�nity through the back door,

we must admit that sentences come into existence at a point in time, namely

when someone formulates them. Thus a sentence which is TAP began being

TAP at a point in time: the point in time when the sentence itself came into

existence.

Why is it so extremely counterintuitive when Brouwer claims that 2 + 2 = 4

was not true before it had been proved? The natural reaction to the claim is:

�But if someone had calculated 2 + 2 prior to that point in time, then they

would have got the result 4�. This reaction we can honor with the concept of

TAP; it is actually exactly what it means to say that 2+ 2 = 4 is TAP (except

that it is also part of the content that the same would happen at any later

point in time). We cannot say that 2 + 2 = 4 was TAP before the sentence

was formulated, and that may still strike some (those who are willing to posit

abstract propositions as truth-bearers) as strange, but the core of the intuition

is salvaged. The core of the intuition is about determinateness: it was given

in advance of anyone calculating 2 + 2 what the result would be. And that

we can acknowledge as constructivists. That mathematical truths are truths

about temporal processes does not imply that the truth is temporal in any

signi�cant sense.15

To justify the claims made in this section we need to withstand the challenge

from the Wittgensteinian rule-following skeptic. In the following section it is

discussed how to do that, after which we return to the subject of TAP and

discuss it in more detail.

4.3 Wittgenstein's rule following considerations

We owe Dummett an answer to one more challenge before being justi�ed in

accepting TAP as a legitimate notion of truth, namely the one about subjunc-
14This is due to monotonicity ; see Section 4.4.
15The sense of counterintuitiveness may be alleviated further by noting that a sentence
existing at one point in time may be true about another point in time. So just as �it is
raining� may be false about today but true about yesterday, 2+ 2 = 4 is true-as-potentiality
about any point in time.
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tive conditionals. Might it not be the case that it is possible for each even

natural number larger than 2 to construct it together with two prime numbers

and get the sum of the latter two to be equal to the former, but also possible

to construct an even natural number larger than 2 in such a way that it can-

not be made equal to two primes? If so the Goldbach Conjecture would be

FAP even though each instance of it is potentially TIC, making the expression

�the Goldbach Conjecture is FAP� strongly misleading: the bivalence that is

built into the clauses for TAP and FAP (conditional on bivalence for atomic

sentences) would be deceitful and not re�ect determinacy in the subject mat-

ter. In that case, TAP could not reasonably be considered a legitimate kind

of truth. For it to be a legitimate kind of truth it has to be the case that,

for each even natural number larger than 2, it is given in advance what would

happen if someone were to construct it and search through the possibilities for

decomposing it into a sum of two primes. The rule following skeptic claims

that it is not.16

Let us say that we are considering the number 60 and claim that it does have

the Goldbach property, for it is the sum of the two primes 7 and 53. We may

then be challenged by a skeptic who claims that it was not necessary that we

got 60 as the result of adding 7 to 53, we might just as well have reached the

result 61. We would like to answer that if we had reached that result, it would

be because we had not applied the addition function, but some other function,

or just picked a number at random, and that it is necessary that a calculation

of the result of applying the addition function to 53 and 7 would have resulted

in 60. However, it is obvious that that does not su�ce as an answer; we need

to back it up with an explanation of what the addition function is and how

it can be grasped by a subject. Given that it is an in�nitary object and we

have forsaken the option of locating it in a Platonic realm, the skeptic may

well think that we are unable to provide such an answer. The �rst part of our

answer is that the function is not to be identi�ed with an in�nity of triples

as the classical mathematician does, but is rather to be understood as a �nite

rule, i.e. intensionally rather than extensionally.

But that answer just induces the skeptic to bring out his Wittgensteinian

arsenal and aim it at showing that as �nite beings we cannot have a unique

in�nite function in mind when we think of �the addition function�. We have

only ever gone through a �nite number of instances, so they in themselves

cannot commit us to one speci�c way of answering all future queries about

16The original sources are, of course, (Wittgenstein 1953) and (Wittgenstein 1956), but I am
relying heavily on (Kripke 1982) and (Wright 1980). Another important reference is (Miller
and Wright 2002). I am ignoring what may be interpreted to be Wittgenstein's own solution
to the skeptical problem in �201 of (Wittgenstein 1953).
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addition, as there are in�nitely many di�erent ways of extrapolating. If we

have never before added 7 and 53, what is it that determines that only 60 could

be the correct answer as we understood �addition� before being confronted with

that speci�c example? Speci�cally, why could we not just as well have meant

quaddition, de�ned by

n⊕m =
⎧⎪⎪⎨⎪⎪⎩

5 if n = 7 and m = 53

n +m otherwise,

so that 5 is the answer.

We might answer that it is commitment to following the rules that de�ne

addition, encoded in the equations n + 0 = n and n +m′ = (n +m)′, where n′

denotes the successor to n. But those rules also have in�nitely many potential

instances and only �nitely many constructed instances, so the skeptic can ask

virtually the same question again, this time about the meaning of �successor�

and of the equality sign. Likewise, it seems that any other answer can prompt

an equally good question from the skeptic and thus does no more than start

a regress. See the literature mentioned in the last footnote for rehearsal of a

large range of such answers. Only those that are closest to my preferred answer

below, and therefore interesting to compare with, will be discussed here.

If we have to conclude that rule following skepticism is correct, then there

might be a Wittgensteinian argumentative strategy available to get from that

conclusion to the additional Brouwerian conclusion that TAA is the weakest

(i.e. has the largest extension) legitimate notion of truth.

Let me explain using the example of the law of associativity, ∀k∀n∀m(k +
(n +m) = (k + n) +m), which is TAA, but was not prior to being proved. It

can be proved by applying rules of inference to the de�nitions of addition (as

given above) and of natural numbers (as given by Dedekind (1888) or Peano

(1889)). So according to a realist, or, better, �a rule-following believer�, the

law of associativity is implicit in those de�nitions. That is, accepting those

de�nitions carries with it an implicit commitment to accepting the law, a com-

mitment which is brought out by producing the proof but was there all along.

The rule-following skeptic denies this. The skepticism towards rules applies

just as much to the rules of inference as to the rules of addition. Therefore,

the �commitment� to the inference rules of (classical or intuitionistic) logic

could have been interpreted in such a way that they did not yield the law of

associativity when applied to the de�nitions of addition and natural numbers.

Hence, before inventing the proof we now have, there was no sense in which

∀k∀n∀m(k + (n +m) = (k + n) +m) was true.
Since the day the proof was invented and was accepted by the mathematical

community, it has been true, in a particular Wittgensteinian way. First, it



4. Non-veri�cationist constructivism 98

has been true that ∀k∀n∀m(k + (n +m) = (k + n) +m) does follow from the

de�nitions and the inference rules, for by accepting the proof, the meaning of

those inference rules has been modi�ed: now the speci�c instances of the rules

that are used in the deduction have become a part of the meaning of the rules.

Second, the law of associativity has now become a new standard for correct

application of the rules of addition. Before, I could calculate k + (n + m),
convinced that I followed the rules of addition and not being answerable to an

objective standard, and get one result, and calculate (k + n) +m, convinced

that I followed the rules of addition and not being answerable to an objective

standard, and get another result. Now, the theorem sets the standard that

I must reach the same result in the two calculations; if not, the community

will judge that I must have committed an error in my attempts to follow the

rules.17

This outlook on the role and ontological status of proofs could be used in

support of Brouwer. One might argue that if neither the truth nor the falsity

of a theorem follows �by itself� from de�nitions and axioms, then it is correct to

repudiate bivalence. And one might �nd it reasonable to insist on constructive

proofs of existential claims for the same reason: a truth maker for the claim is

not determined by the de�nitions and axioms themselves, so only if we have a

method for �nding one is the claim justi�ed.

However, Wittgenstein's rule-following skepticism is so corrosive that it could

also be used to undermine Brouwer's position. It is algorithms which are the

truth makers for sentences that are TAA, and algorithms are just a special

kind of rules. They do not, according to Wittgenstein, objectively determine

an outcome of executing them. That is, they do not objectively determine

what can potentially be a TIC-maker for the sentence. Accepting a sentence

as TAA is just to decide to count an execution of the algorithm that does not

result in the production of a TIC-maker as a misexecution.18

Then again, in some places19 Wittgenstein refuses to be revisionary towards

17I or the community may of course give this new standard, which is itself a rule, a deviant
interpretation in any speci�c case and declare that the results 5+(2+4)=11 and (5+2)+4=12
do not constitute a violation of the law of associativity. Also the new standard has no more
force than what is attributed to it.
18Brouwer seems to try to take a third, intermediate position where there are only two.
There are only two possible positions regarding what happens when a subject constructs the
elements of a lawlike sequence: either he invents the elements (perhaps feeling that his hand
is tied) or he discovers something predetermined. The predetermination of the decimals
of π implies the predetermination of k1. If Brouwer denies predetermination as I have
explicated it (perhaps just referring to the subjective feeling with the word �predetermined�
� see footnote 2 on page 63), he cannot allow TAA that goes beyond TIC for that involves
rule-following trust (unless he understands the �true� in �true-as-anticipation� in the special
Wittgensteinian way, and he certainly does not).
19For example (Wittgenstein 1956, V, 52).
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classical mathematics because its theorems actually are true in the strongest

sense that Wittgenstein would allow a mathematical theorem to be: they are

accepted by (the vast majority of) the mathematical community as a standard

for judging when rule-following has gone wrong.

I will not go deeper into a discussion of which conclusion a rule-following

skeptic should draw.20 I will instead argue for trusting in rule-following and

then proceed by investigation the consequences of this trust. Let me just

explicitate what can be concluded from the discussion so far: It is not clear

that rule-following skepticism can be used successfully in support of the thesis

that TAA is the strongest legitimate notion of truth. It was noted in Chapter 3

that Brouwer requires actual constructions in some cases while being happy

with potential constructions in other cases. The problem of justifying this is

just moved back one step if rule-following skepticism is brought in in defense:

some rules (rules with in�nitely many steps, e.g. the one for the construction

of π) are distrusted while other rules (�nite algorithms) are trusted.

Let us �rst consider whether the Platonist is in a better position to withstand

the skeptical challenge. Is there a plausible answer which is only available

if we accept Platonism and not if we keep to constructivism? Kripke (1982,

53�54) answers this question in the negative, and I see no reason to challenge

him in that respect. The Platonist claims that the addition function exists

as an actually in�nite set of (something like) ordered triples in the Platonic

realm and that this set is the truth maker of truths about addition. However,

the existence of this set does not in itself provide a solution to Wittgenstein's

challenge which is to account for how a subject is able to refer to addition.

The Platonist has the referent, but she still needs an account of the connection

between the referring expression or thought and that referent. If there is a

Platonic + then (we must assume in the absence of an argument to the contrary

that) there is also a Platonic ⊕. How do we manage to refer to the former

rather than the latter with the word �addition�, the skeptic asks? The answer

has to be located outside the Platonic realm, in the mind of the language user

or in the language community, just as before.

So the question of rule following skepticism versus rule following trust is in-

dependent of the question of Platonism versus mentalism. Rule following is

about creating a connection between a �nite rule as understood by a mathe-

matician and its in�nite extension. This problem does not go away when it is

assumed that the in�nite extension is a Platonic entity.21

20The reader is referred to part 2 of (Wright 1980) where the questions is treated in much
more detail.
21It also does not help to posit, as Frege (1892) did, objective, abstract senses to facilitate
the connection between concepts and referents, i.e. supplementing mathematical Platonism
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I believe that the correct � and Platonism-independent � answer to the skeptic

is, in a word, simplicity. On that issue Kripke (1982, 38, original emphasis)

writes the following:

Let no one � under the in�uence of too much philosophy of science

� suggest that the hypothesis that I meant plus is to be preferred

as the simplest hypothesis. I will not here argue that simplicity

is relative, or that it is hard to de�ne, or that a Martian might

�nd the quus function simpler than the plus function. Such replies

may have considerable merit, but the real trouble with the appeal

to simplicity is more basic. Such an appeal must be based either

on a misunderstanding of the skeptical problem, or of the role of

simplicity considerations, or both. Recall that the skeptical prob-

lem was not merely epistemic. The skeptic argues that there is no

fact as to what is meant, whether plus or quus. Now simplicity

considerations can help us decide between competing hypotheses,

but they obviously can never tell us what the competing hypotheses

are. If we do not understand what two hypotheses state, what does

it mean to say that one is `more probable' because it is `simpler'?

If the two competing hypotheses are not genuine hypotheses, not

assertions of genuine matters of fact, no `simplicity' considerations

will make them so.

I think that Kripke is completely correct in his critique of the speci�c way to

use simplicity as a solution contemplated here, so this is not the solution that

I will advocate. But there is another way to use it, where simplicity comes

in earlier, so to speak, not considered by him. In addition to the epistemic

role that simplicity can play in the choice between hypotheses, I claim that

simplicity can play a constitutive role for a rule. A subject can succeed in

meaning n +m′ = (n +m)′ with �n +m′ = (n +m)′� if he commits to a �nite

number of examples such as 0′′ + 0′′ = (0′′ + 0′)′, 0′′′ + 0′′′′ = (0′′′ + 0′′′)′ and
0+0′′′ = (0+0′′)′ and also commits to extrapolate from these examples in future

cases in the simplest possible way. I further claim that we have an inborn sense

of simplicity which is partially constitutive of rationality which we are able to

apply when needed, independently of an ability to articulate general rules for

when something is simpler than something else. (So this claim is a natural

continuation of the reply to Dummett above.)

Let us consider this proposal in relation to Kripke's objections, starting with

the �real trouble�: Kripke only argues that if we have not succeeded in referring

with linguistic Platonism, for that just pushes back the problem a step: how do our physical
words and mental thoughts connect with (one speci�c entity in) this abstract realm.
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to a speci�c hypothesis, then we cannot use simplicity epistemologically to

give warrant for believing it. It is correct that we need to be able to state

a hypothesis prior to �guring out its truth value. But that we have to be

able to �pick out� rules/hypotheses semantically independently of epistemically

�picking out� the true hypothesis from a range of options, does not in the least

imply that we cannot also use the concept of simplicity in our e�orts to do the

former.

It is also irrelevant that a Martian might �nd the quus function simpler than

the plus function. All the human subject needs in order to have the ability

to mean addition with some expression is that he is in possession of some

simplicity measure according to which addition is the simplest extrapolation

of some �nite range of examples. Maybe the Martian's sense of simplicity is

such that the Martian needs a di�erent, larger range of examples to be able to

pick out addition. Or maybe the Martian's sense of simplicity is such that no

�nite range of examples will su�ce to do that, in which case only the human

and not the Martian will be able to do arithmetic. For humans to do arithmetic

and talk about it, it is not a necessary condition that all language-using species

can do the same.

This of course generalizes to the issue of relativity of simplicity between hu-

mans. In order for all (or almost all) humans to be able to communicate it is

su�cient that there are enough �basic concepts� (perhaps including the rule

n +m′ = (n +m)′) from which other derived concepts (perhaps including the

rule for addition) can be de�ned, which are such that for each person there is

some range of examples that will su�ce for that person to grasp, with the aid

of the person's individual sense of simplicity, the concept. This is compatible

with a signi�cant amount of relativity. It is not compatible with those inborn

senses of simplicity being completely unrelated, so if the skeptic claims that

we all mean something di�erent with the rule �n+m′ = (n+m)′� and that that

would be revealed if we asked di�erent people to apply it to larger numbers

than had been done at any previous point in history, we cannot prove him

wrong. But fortunately this skeptic is not Cartesian; the rules of the game are

di�erent. We are not searching for a way to know the correct answer in a di-

alectic situation where the criteria for knowledge can be strengthened without

end. We are asking a semantic question in a dialectic situation where apod-

ictic knowledge is not the goal. This skeptic must accept a plausible answer.

He is not free to throw more and more outrageous skeptical scenarios at us

just because he can think of them. I do believe that those inborn senses of

simplicity have a su�cient overlap and that that overlap is a signi�cant part

of the explanation for our ability to communicate.
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Finally, de�ning simplicity is not needed in order to make the appeal to it that

is made here. It is claimed to be a primitive human faculty, so the language

user needs no explicit knowledge about it. If explicit knowledge can be gained

by a philosopher of science � and Kripke is probably right when he writes that

that would be di�cult to achieve � it would be impossible to convey it to

someone who did not already have implicit knowledge about simplicity. For

the de�nition of simplicity would need to be formulated in terms of rules, and

a person lacking that implicit knowledge would not be able to interpret them.

This is analogous to the case with the T-schema above: an implicit knowledge

of both simplicity and the idea of truth conditions has to come before explicit

knowledge of the same.22

Connecting back to Chapter 2, my claim can be formulated as follows: at a

given time, t1, the rule n+m′ = (n+m)′ may for a given subject be identi�ed

with

⟨0′′+0′′=(0′′+0′)′,0′′′+0′′′′=(0′′′+0′′′)′,0+0′′′=(0+0′′)′,
intention to expand only in the simplest possible way⟩,

and may later, at t2, be identi�ed with

⟨0′′+0′′=(0′′+0′)′,0′′′+0′′′′=(0′′′+0′′′)′,0+0′′′=(0+0′′)′,0+0′′′′=(0+0′′′)′,
intention to expand only in the simplest possible way⟩,

and the numerical identity between them does not rely on a decision at t2, but

obtains in virtue of the subject's sense of simplicity as it exists already at t1.

The cognitive process described here will of course not normally take place at

the conscious level. Explicitly, a human mathematician will simply commit to

�following the rules� or even more simply �do mathematics�. It is in principle

possible for this cognitive process to be conscious, but I doubt that it ever

actually is: anyone with even the most basic mathematical training will be

so used to dealing with syntactic rules that they will have the feeling that

they understand the rules as written in mathematical textbooks without any

mediating means, and a child just beginning to learn mathematics does not

re�ect on what commitments they accept. But it is principally impossible that

the simplicity measure is the result of a choice on the part of the subject, for

any choice would have to be interpreted in future applications and for that a

more basic simplicity measure would be needed; it must be instinctive.

22There is a disanalogy: In the present case it is strictly speaking wrong to talk about implicit
knowledge, since, as argued above, there is no need for an objective simplicity measure to
have knowledge about. It would be more correct to say that the language user needs to have
an implicit criterion.
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It is instructive to compare this simplicity answer with another answer dis-

cussed by Kripke, namely the dispositional, according to which meaning ad-

dition by �addition� is to be disposed, for any natural numbers n and m, to

answer with the sum of n and m when asked to add n and m. Kripke criticizes

this in two ways. First, he points out that no human being is disposed to an-

swer with the sum of n and m in more than a �nite number of cases, for if the

numbers are su�ciently large, we are unable to do the computation. Second,

with this answer we cannot account for the concept of making a mistake in a

calculation � whatever result we in fact reach must be what we meant to be

the sum � and that does not square with our intention to submit to a norm

when we make a claim about what the sum of two numbers is.

The simplicity answer is not subject to those problems. Where dispositions

only cover a �nite number of potential cases, my sense of simplicity outruns my

practical ability to apply it and �reaches out to in�nity�. I have a clear sense of

what it is to be the simplest answer to a question of the form �what is the result

of rewriting n +m′ similarly to 0′′ + 0′′ = (0′′ + 0′)′, 0′′′ + 0′′′′ = (0′′′ + 0′′′)′ and
0+ 0′′′ = (0+ 0′′)′?�, even in cases where n or m is too large for me to actually

answer. That is, I have a clear sense of how I would go about computing the

answer if I had more computational power, enlarged memory capacity, etc.

And I have imposed a norm on myself that makes it possible to distinguish

conceptually between a correct and an incorrect calculation.

One way to formulate the rule following problem is like this: the understanding

of a rule has to be immanent to the subject, but the subject is �nite and the

rule may be in�nitary; if the rule is immanent, how can it transcend us? To this

formulation my answer is that it can because what is immanent to the subject

is the idea about what it is for someone to follow the rule, i.e. an understanding

of what is common to all possible applications of the rule, while it is irrelevant

what the subject itself actually does (as opposed to �tries to do� or �would try

to do�) when applying the rule. (Compare: A lame person can have a clear

understanding of what it is to run.)

Of course, this is exactly what Wittgenstein is famous for denying, so I by

no means claim to have refuted him. I only claim to have an answer that is

plausible and consistent with (non-veri�cationist) constructivism.23 As, fur-

thermore, the arguments above show that the Wittgensteinian justi�cation of
23Wittgenstein's rule following skeptic seems in places, e.g. (Wittgenstein 1956, part 1, para-
graph 113), to be even more extreme than Kripkenstein's. He is uncooperative, intentionally
trying to �nd loopholes in the instructions he has been given, so he can claim to follow them
but deviate from the intended interpretation, even when he very well understands what it is.
The behavior of such a troublemaker is quite irrelevant when we are discussing the possi-
bility of having a unique rule in mind. The possibility of intentional misunderstanding does
not rule out the possibility of understanding. You can claim to have a completely di�erent
sense of simplicity than someone else, but you probably do not, and even if you do, that does
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Brouwer, if there is one, is completely independent of the choice between be-

lieving that mathematical objects are mental constructions and that they exist

atemporally in a Platonic realm, one who has adopted the former position has

the same right as the Platonist to develop a mathematics that is based on

trust in rule-following.

4.4 Arithmetic

So that is exactly what we will do � and have already brie�y started doing in

Section 4.2. First, however, it seems prudent to pause to take stock.

It was concluded in Chapter 1 that there is little reason for believing in a Pla-

tonic ontology for mathematics and in actual in�nity. We therefore turned to

Platonism's historically most important alternative, intuitionism, for answers.

Hoping to locate a legitimate notion of in�nity, we were disappointed in Chap-

ter 2 to �nd out that lawless choice sequences are not more than forever �nite

sequences that their creators have an intention to expand. Wittgenstein would

pass the same judgment on lawlike sequences, but it has been argued that we

can plausibly disagree with him, without smuggling in actual in�nity through

the back door, by trusting in human beings' ability to grasp a rule. So, having

rejected actual in�nity and non-rule-based potential in�nity, we must conclude

that the only available ontological basis for an in�nite mathematics is to be

found in rules.

These must be rules for what can be realized in this world (which contains

physical entities and mental entities � one kind of which may or may not be

reducible to the other � but which is not, as far as I am willing to make

assumptions, inhabited by extra abstract entities). Thus we will proceed on

the assumption that Brouwer, as interpreted in Chapter 3, was partially right:

our most liberal concept of truth must be grounded in the concept of truth-

in-content.

On the other hand, we did not �nd convincing reasons in Sections 4.1 and 4.3

to follow Brouwer in thinking that this most liberal concept of truth should

be restricted by what is veri�ed or veri�able. Thus the concept of truth-as-

potentiality seems perfectly legitimate. In particular, we are able to vindicate

classical arithmetic on an austere ontological basis � this was brie�y discussed

in Section 4.2 and will be treated in more detail in this section.

not prevent that someone else from �xing on a unique rule. Another, also more extreme,
interpretation can be found in (Wright 1980, chapter II, section 3), but it is dependent on
Dummett's conclusion that we cannot understand veri�cation-transcendent truth criteria,
which we have already rejected.



4. Non-veri�cationist constructivism 105

Let us try to be more speci�c about what exactly that ontological basis is.

Rules are of central importance. On pain of actual in�nity we cannot identify

a rule with the extensional set of all its potential applications. And Wittgen-

stein's rule-following challenge could not be met if we turned to formalism and

conceived of rules as merely syntactic objects. Hence, it is rules as intensional

objects, and more generally interpreted language, i.e. language as understood

by a subject, that we are giving central place in our account of mathematics.

This is in opposition to both the intuitionist and the Platonist.

On the one hand we have the rules themselves, and on the other we have

the results, actual and possible, of applying those rules. Where, ontologically,

should we locate the latter? The rules can be implemented in a Turing machine

which can then produce the results. So is mathematics about Turing machines?

Appealing to a notion of abstract Turing machines is of course out of the

question, so the proposal would have to be that it is concrete, physical Turing

machines that is the subject matter of mathematics. Therefore, there is a

problem with that proposal, namely that any output from such a machine,

e.g. four strokes on a piece of paper as a result of calculating 2 + 2, contains

irrelevant information, such as the length, thickness and color of the strokes,

that has to be abstracted away in order to get the result of the rule itself. And

that is an act of interpretation, that is, an act that only a mind can e�ect. Thus

it is really the interpretation of the result (and the interpretation of all the steps

toward that result) that mathematics is concerned with. We must therefore

agree with Brouwer on one more point, namely that mathematics is about

mental constructions.24 A sentence is made TIC by a subject constructing its

truth-maker at a given point in time. And � as will become important in the

following � the relation of dependency that obtains between certain sentences'

becoming TIC is a temporal relation. A conjunction, for instance, can only

become TIC after both of its conjuncts have.

This does not mean that we have to agree with Brouwer on the speci�c, rather

mystical, details in his account of the mathematical mind. Speci�cally, there

seems to be no compelling reason to accept the requirement that all mathe-

matics must be reducible to the �empty two-ity�. Instead, the conclusion we

have reached is that all rules that can be grasped with a �nite number of ex-

24The mental state of the subject making mathematical constructions can contain irrelevant
information, just like a physical output, but the point is that the subject's consciousness
can be intentionally directed towards just the relevant information and in that way abstract
away from contingent aspects of the mental state, if for example the subject tends to do
arithmetical calculations by imagining strokes with length, thickness and color. This is a
further departure from Brouwer. If I interpret his (1948) talk of the �empty two-ity� and
the �deepest home of consciousness� correctly, he is assuming that e�ecting mathematical
constructions that are pure in themselves, so to speak, is within the powers of the subject.
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amples and our sense of simplicity are legitimate as basic building blocks.25

Therefore, we will rede�ne the concept of TIC below. The adjustment is quite

small, though, and most of what has been said about it in Chapter 3 will still

hold good.

Rules are also � to �nally make that explicit � what we point to in order

to answer Dummett's question about subjunctive conditionals. Subjunctive

conditionals are at the heart of the notion of truth-as-potentiality: a sentence

being TAP depends on what would happen if the subject executed certain

constructions. And we must grant Dummett that such conditionals cannot

be barely true. We thus do owe him a straight answer, and that answer

is that rules are the truth-makers for mathematical subjunctive conditionals.

Goldbach's Conjecture is TAP or FAP by virtue of the rules that de�ne �natural

number�, �even�, �sum�, �prime� and the logical connectives and quanti�ers.

(Actually, Dummett demands a categorical statement as truth-maker for a

subjunctive conditional, and that we must deny him. The content of a basic

rule cannot be fully and informatively expressed in a statement as it relies on

an essentially implicit sense of simplicity.)

Next, let us consider if there is a �nitist challenge that may give problems

for our theory of mathematics. It has been suggested26 that intuitionism is

unstable in the sense that the reasons given for intuitionism are more plausibly

reasons for strict �nitism. A core claim of intuitionism is that a necessary

condition for a mathematical sentence being true is that it is veri�able in

principle. But the idealization to what is veri�able in principle rather than

just veri�able given the actual constraints imposed by the shortness of human

life, limited memory, etc. may seem like an unjusti�ed element of realism.

The thought is that the idealizing intuitionist is appealing to what a subject

which is just like a human, just with a longer life, more memory, etc. would

be able to verify, and to assume that what such a being is able to verify

is already determined and independent of the speci�cs of exactly how this

being is equipped with super-human powers is to assume that there are mind-

independent facts of the matter. Therefore, the argument goes, it is only

25The traditional desire to reduce mathematics to rules that are as simple as possible can,
however, be justi�ed on the present proposal. The simpler the rules are, the higher is the
likelihood, presumably, of di�erent subjects succeeding in actually grasping the same rule
when they try to. Also, an individual may be under the illusion that he grasps a complicated
rule only to �nd out, when needing to apply it in an unforeseen case, that he is unable to
decide between two or more ways of doing it. (Unable, not merely in the sense that that
he has insu�cient memory, time, etc., but in the sense that he realizes that he had not
implicitly decided between the options in advance.) Thus, reduction to simple rules serves
to minimize the risk of rule following failure.
26See the paper �Wang's Paradox� in (Dummett 1978b), chapter VII, section 3 of (Wright
1980) and (Wright 1982). See also (Parsons 1997).
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decidable questions under a certain threshold of complexity for which bivalence

holds prior to execution of the decision procedure.

Without needing to evaluate the force of this challenge to the intuitionist,

we can consider whether there might be a similar problem for the present

proposal. Are we relying on an idealization of human powers? We certainly

do need to appeal to a counterfactual situation where we have a potentially

in�nite life, a potentially in�nite memory, etc. so we could e�ect any of the

possible constructions quanti�ed over in the de�nition of TAP. However, the

role allocated to the actual human mathematician is a simpler one on the

present theory than it is in the case of intuitionism. According to intuitionism,

the mathematician must himself deliver the truth-makers, for it is considered

illegitimate to assume the existence of something external to him that can

serve that role. Thus, the determinateness of constructions by a counterfactual

super-human extension of himself may be considered within the scope of what

it is illegitimate to assume. On the present proposal, on the other hand, the

actual mathematician only has to deliver semantic determinateness, not truth-

makers. He has to understand each rule R in such a way that the extension of

�correct application of R� is implicitly determined. Whether or not he himself

is able to determine if a given application of R is correct, is immaterial; the

task of delivering truth-makers is one he can unproblematically delegate to

counterfactual versions of himself or to someone else.

There is certainly a signi�cant assumption here, namely that the actual math-

ematician can have a clear sense of what it is for
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to be a correct application of the rule n +m′ = (n +m)′ even when N and M

are astronomical and the instance therefore unsurveyable to him. But there is

not idealization in the form of unclear �in principle�-modi�ers and therefore no

instability ; we rely on 1) what a possible subject could construct and 2) what

the actual subject actually does in �xing rules semantically.

That is why we can recover classical arithmetic in the way described above.

However, this positive result does not generalize very far. One reason is obvi-

ous: with only potential in�nity we can at most validate theories of classical

mathematics for which the domain is countable. In particular, classical set

theory has no place in our reconstruction. An alternative theory of collec-

tions will be the focus of the rest of this dissertation, beginning from the next

chapter. Leading up to that, the rest of this chapter will be concerned with

making it clearer exactly why our theory of arithmetic is equivalent to classical
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arithmetic. There are two reasons. The �rst, which has already been men-

tioned in passing, is that every element of the domain of classical arithmetic,

i.e. every natural number, has a name. In our ontology we have only found

space for completed constructions and rules for �nite or potentially in�nite,

but deterministic, constructions, and both are capable of being individually

named. The second is that arithmetic is well-founded, in a certain sense. Ex-

plaining what this sense is presupposes a little stage setting, namely explicitly

formulating a rule-based arithmetic.

Let for present purposes the language of arithmetic be speci�ed as follows.

Terms are what can be composed in the usual way out of 0 (zero), ′ (succes-

sor), + (addition), ⋅ (multiplication), variables and brackets. (The standard

conventions for suppression of brackets will be employed.) An atomic formula

is something of the form a = b where both a and b are terms. On top of that,

de�ne �formula� and �sentence� in the usual �rst-order way, letting negation,

disjunction and the existential quanti�er be primitive, and conjunction, the

conditional and the universal quanti�er be de�ned. For any formula φ, let

φ(x/a) be the result of replacing all free occurrences of the variable x in φ

with the term a. The notation φ(a/b) will be used ambiguously to denote any

formula that is the result of replacing one or more occurrences of the term a

with the term b in φ.

Arithmetic is then constituted by the following rules that a subject may impose

on himself (a, b and c are meta-variables for terms):27

� I may at any time introduce the true sentence 0 = 0.

� I may at any time introduce a false sentence of the form a′ = 0 or 0 = a′.

� If I already have a true (false) sentence of the form a = b, I may introduce

a true (false) sentence of the form a′ = b′.

� If I already have a true (false) sentence of the form a = b, I may introduce

a true (false) sentence of the form a + 0 = b (or a = b + 0; henceforth I

refrain from mentioning such trivial variants).

� If I already have a true (false) sentence of the form (a + b)′ = c, I may

introduce a true (false) sentence of the form a + b′ = c.

� If I already have a true (false) sentence of the form 0 = b, I may introduce

a true (false) sentence of the form a ⋅ 0 = b.

� If I already have a true (false) sentence of the form a + a ⋅ b = c, I may

introduce a true (false) sentence of the form a ⋅ b′ = c.
27Alternative rules resulting in the same true and false sentences are possible. These are not
claimed to be privileged in any way.
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0 = 0 ∶ ⊺ a′ = 0 ∶ �

a′ = b′ ∶ ⊺(�) a + 0 = b ∶ ⊺(�) a + b′ = c ∶ ⊺(�)

a = b ∶ ⊺(�) a = b ∶ ⊺(�) (a + b)′ = c ∶ ⊺(�)

a ⋅ 0 = b ∶ ⊺(�) a ⋅ b′ = c ∶ ⊺(�)

0 = b ∶ ⊺(�) a + a ⋅ b = c ∶ ⊺(�)

φ ∶ ⊺(�)

�������

=======

φ(a/b) ∶ ⊺(�) a = b ∶ ⊺

Figure 4.1: Arithmetical construction rules

� If I already have a true (false) sentence of the form φ(a/b) and a true

sentence of the form a = b, I may introduce a true (false) sentence of the

form φ.

� I may not introduce true or false atomic sentences of arithmetic beyond

what is sanctioned by the above rules.

These rules can be represented graphically as in Figure 4.1, using the symbol

⊺ for truth and the symbol � for falsity. The notation is to be read as follows:

if and when the truth(s)/falsity below are available (both of them in the case

of the bottom-most rule), the truth/falsity above can be created. An example,

showing how 2⋅3 = 6 can be made TIC, is displayed in Figure 4.2. Each sentence

in this tree can be made TIC by a subject whenever he has already made the

sentences below it TIC, and in that sense each truth in the tree depends

on the truths below it. It should be clear that the feature of this example,

that no sentence depends circularly on itself or on an in�nite downward-going

sequence of sentences, generalizes to all arithmetical sentences. This is the

sense in which arithmetic is well-founded. I will get to the connection between

well-foundedness and bivalence in a moment.

To the rules already introduced we add these logical rules, which are repre-

sented graphically in Figure 4.3:
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0′′ ⋅ 0′′′ = 0′′′′′′ ∶ ⊺

0′′ + 0′′ ⋅ 0′′ = 0′′′′′′ ∶ ⊺
iiiiiiiiiii

UUUUUUUUUU

0′′ + 0′′′′ = 0′′′′′′ ∶ ⊺ 0′′ ⋅ 0′′ = 0′′′′ ∶ ⊺

(0′′ + 0′′′)′ = 0′′′′′′ ∶ ⊺ 0′′ + 0′′ ⋅ 0′ = 0′′′′ ∶ ⊺

iiiiiiiiiii
TTTTTTTTTT

0′′ + 0′′′ = 0′′′′′ ∶ ⊺ 0′′ + 0′′ = 0′′′′ ∶ ⊺ 0′′ ⋅ 0′ = 0′′ ∶ ⊺

(0′′ + 0′′)′ = 0′′′′′ ∶ ⊺ (0′′ + 0′)′ = 0′′′′ ∶ ⊺ 0′′ + 0′′ ⋅ 0 = 0′′ ∶ ⊺

jjjjjjjjjj

0′′ + 0′′ = 0′′′′ ∶ ⊺ 0′′ + 0′ = 0′′′ ∶ ⊺ 0′′ + 0 = 0′′ ∶ ⊺ 0′′ ⋅ 0 = 0 ∶ ⊺

(0′′ + 0′)′ = 0′′′′ ∶ ⊺ (0′′ + 0)′ = 0′′′ ∶ ⊺ 0′′ = 0′′ ∶ ⊺ 0 = 0 ∶ ⊺

0′′ + 0′ = 0′′′ ∶ ⊺ 0′′ + 0 = 0′′ ∶ ⊺ 0′ = 0′ ∶ ⊺

(0′′ + 0)′ = 0′′′ ∶ ⊺ 0′′ = 0′′ ∶ ⊺ 0 = 0 ∶ ⊺

0′′ + 0 = 0′′ ∶ ⊺ 0′ = 0′ ∶ ⊺

0′′ = 0′′ ∶ ⊺ 0 = 0 ∶ ⊺

0′ = 0′ ∶ ⊺

0 = 0 ∶ ⊺

Figure 4.2: The construction of the TIC of 2 ⋅ 3 = 6

� If I already have a true (false) sentence φ, I may introduce the false (true)

sentence ¬φ.

� If I already have a true sentence φ (or ψ), I may introduce a true sentence

φ ∨ ψ.

� If I already have false sentences φ and ψ, I may introduce a false sentence

φ ∨ ψ.

� If I already have a true sentence of the form φ(x/a), for some term a of

the form 0′′′⋯′, I may introduce a true sentence of the form ∃xφ(x).

� If I already have a false sentence of the form φ(x/a) for every term a of

the form 0′′′⋯′, I may introduce a false sentence of the form ∃xφ(x).

� I may not introduce true or false complex sentences of arithmetic beyond

what is sanctioned by the above rules.
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¬φ ∶ � ¬φ ∶ ⊺

φ ∶ ⊺ φ ∶ �

φ ∨ ψ ∶ ⊺

������

333333 φ ∨ ψ ∶ ⊺

������

333333 φ ∨ ψ ∶ �

������

333333

φ ∶ ⊺ ψ φ ψ ∶ ⊺ φ ∶ � ψ ∶ �

∃xφ(x) ∶ ⊺

nnnnnnnnnnnnn

||||||||

BBBBBBBB

QQQQQQQQQQQQQQQ
∃xφ(x) ∶ �

||||||||

BBBBBBBBB

φ(0) φ(0′) ⋯ φ(0′′′⋯′) ∶ ⊺ ⋯ φ(0) ∶ � φ(0′) ∶ � ⋯

Figure 4.3: Logical construction rules

As a complex sentence only depends on sentences of lower complexity (suitably

de�ned), well-foundedness is intact after the addition of these rules.

What the rules do is that they �x the meaning of the vocabulary of arithmetic

by stipulating truth-conditions for the sentences in which it appears. More

precisely, they �x the TIC-conditions: when the subject �introduces a true

sentence� according to the rules, he makes it TIC. The rules directly �x the

TIC-conditions. As TAP is de�ned in terms of what is possibly TIC, they also

indirectly �x TAP-conditions.

Notice that in the leftmost rule for disjunction in Figure 4.3 there is no truth

value for ψ. This means that the truth value does not matter. ψ can be true-

in-content, false-in-content or neither, and in all cases φ∨ψ is true. Similarly,

in the rule for existential quanti�cation being true: as long as one instance is

true, the rest can be true-in-content, false-in-content or neither � in the last

case perhaps the instance does not even exist as a sentence (which at any given

time must be the case for all but �nitely many instances).

It is clear that bivalence fails for TIC, that is, there is a third option in addi-

tion to a sentence being true-in-content and false-in-content (FIC).28 It is not

immediately clear that this is a failure of bivalence in a deep sense (just as it

was argued in Chapter 2 that the failures of bivalence due to lawless choice

sequences were not as deep as Brouwer made them out to be), for there is no

28The introduction of the dual notion of FIC does not signal any further departure from
Brouwer. It is merely a matter of simplicity of presentation. The discussion in Chapter 3 was
most elegantly made in terms of TIC alone, but in the sequel the dual notion will simplify
matters.
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problem in applying an exclusion negation here and saying that, for any math-

ematical sentence, either it is TIC or it is not TIC. But the last word on the

issue of bivalence has not been said yet; we will discuss it in Chapter 7. What

should be noted, though, is that whether or not this failure of bivalence is

deep, it is legitimate to have a predicate for sentences for which a construction

has been e�ected that rules out the possibility that the sentence can become

TIC, and that is exactly what FIC is.

We want the concepts of TIC and FIC to be monotonic in the sense that for

any �possible worlds� W1 and W2, if every mathematical construction that has

been e�ected in W1 has also been e�ected in W2, then every sentence that is

TIC (FIC) in W1 is also TIC (FIC) in W2. Again, there are clearly legitimate

and more inclusive notions of truth and falsity according to which �ξ is true�

(where ξ is some mathematical sentence) changes from being false to true,

so that these notions are non-monotonic, but such contingent matters are of

little mathematical interest. In order to get �as close as possible� to classical

mathematics, we are interested in de�ning notions of TAP and FAP that are

atemporal, if there are any such legitimate notions, and as we have seen, that

is exactly what we get (with only the slight caveat that TAP and FAP are as

temporal as the existence of the sentences to which they apply) when they are

de�ned as above, relative to monotonic concepts of TIC and FIC. Therefore,

we should follow Brouwer in employing such monotonic notions. Not because

we are forced to, but because it is the suitable way to abstract from empirical

matters that are irrelevant to mathematics.

Given this desire for monotonicity, the logical rules described above present

themselves as very natural ways to deal with the gap between TIC and FIC.

First, they do indeed satisfy the requirement for monotonicity: making φ ∨ ψ
TIC on the basis of φ being TIC alone can be done without the risk that its

truth value may change when more constructions are carried out. Second, they

are the strongest possible such rules, and there seems to be no reason why we

should go with something weaker and, for example, refuse to make φ ∨ψ TIC

when ψ is neither TIC nor FIC. Thus, we arrive at the Strong Kleene29 rules for

the connectives and the quanti�er, and the connection between constructivism

and Kripke's theory of truth should now begin to become clear.

However, it is not fully correct to say that Strong Kleene is the strongest

possible set of rules that are consistent with monotonicity. Rather, Strong

Kleene is the strongest possible compositional set of rules that are consistent

with monotonicity. The search for suitable rules that are stronger than Strong

29See (Kleene 1952, 334).
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Kleene will be a major theme later in this dissertation. For the moment we

will stick to them.

The modi�cation of the concept of TIC has not changed the fact that there

are sentences φ such that neither φ nor ¬φ can become TIC (equivalently:

there are sentences φ such that φ can neither become TIC nor FIC). The

simplest example is that an existentially quanti�ed sentence cannot be FIC,

when, as in the case of arithmetic, the domain is in�nite. This of course

makes the de�nition of FIC of an existentially quanti�ed sentence moot, but

I have included it anyway in order for TIC and TAP to correspond to each

other, in the sense that if I am wrong and completed in�nite constructions

are metaphysically possible, then a sentence is possibly TIC if and only if it is

TAP, and possibly FIC if and only if it is FAP.

For every sentence of arithmetic there is a tree for it, like the one in Figure 4.2,

that has the sentence in question at the top and bottoms out in sentences of

the form 0 = a that can be made TIC or FIC at any time, i.e. sentences that do

not depend on further sentences. Such a tree depicts the dependency structure

for the sentences in it. As already noted, the meaning of �dependency� can,

in the case of TIC and FIC, be cashed out in temporal terms: a sentence φ

depends on the sentences below it in the sense that φ can only be made TIC

or FIC after the sentences below it have been given in-content truth values

(or some of the sentence below it, in the case of TIC of disjunctions and

existentially quanti�ed sentences). TIC and FIC travel up trough the tree in

time, so to speak.

In a derived and more metaphorical sense, TAP and FAP also travel up through

the tree. Although a sentence high up in the tree can become TAP or FAP

prior to all the sentences below it getting as-potentiality truth values (because

that just requires that it is formulated prior to them), the upper sentence does

depend on the (potential) truth values of the lower.

Because each atomic sentence of arithmetic has a �nite tree that bottoms out

in sentences that can be made either TIC or FIC at any time, it is possible

for each atomic sentence to become either TIC or FIC. So as every sentence of

arithmetic has a tree where every branch passes through an atomic sentence,

every sentence that has been formulated is either TAP or FAP. That is how

the well-foundedness of arithmetic is responsible for ensuring that the failure

of bivalence for TIC does not spill over into failure of bivalence for TAP.

Let me �nish this chapter by addressing a potential worry. It may seem like

the present account of arithmetic is relying very heavily on objectivism (or,

in the sense in which Dummett uses the word, realism) about alethic facts,

for instance when the truth value of Goldbach's Conjecture is both claimed
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to be settled at present even though unknown and made to rely on what it is

possible to construct. (Goldbach's Conjecture is TAP if necessarily, for any

possible even number n larger than 2, it is possible to construct prime numbers

n1 and n2 such that it is possible to make n = n1 + n2 TIC; and it is FAP if it

is possible to construct an even number n larger than 2, such that necessarily,

for any two prime numbers n1 and n2 that are constructed, it is possible to

make n = n1 + n2 FIC.) One may object that this reliance on objective modal

facts to partition the sentences of arithmetic into true and false ones is not

that di�erent from Platonism.

This is to get the �division of labor� between objective modal facts and the rule-

formulating subject wrong. Consider the (potentially in�nite) collection of all

�nite trees of sentences of arithmetic. The alethic assumption that I am making

is merely that every such tree is possible, and that is just the relatively minor

assumption that there is no �nite upper bound on the size of trees that are

metaphysically possible (that is, the denial of strict �nitism). From there, the

subject takes over: it is his ability to semantically pick out a rule that does the

real work, i.e. partitions this collection of trees into those that are in accordance

with the rules and those that are not. Thus, the formulation �it is impossible to

construct a true sentence of the form k+(n+m) ≠ (k+n)+m in accordance with

the rules� may give the wrong impression, while the equivalent assertion �all

possible constructions of a true sentence of the form k + (n +m) ≠ (k + n) +m
are in con�ict with the rules� has the right emphasis. It is of course (to

repeat) also a signi�cant assumption that the subject succeeds in partitioning

the potential in�nity of trees, but as it makes mathematics immanent instead

of transcendent, it is not Platonic in nature.



Chapter 5

Classes and real numbers

5.1 Sets, classes and species

We will now turn from arithmetic to set theory � or rather, for reasons to be

explained, �class theory� � and stay with that subject for the remainder of

the dissertation. We �rst consider the classical concept of sets, the classical

concept of classes and Brouwer's concept of species. Finding them all lacking,

we then turn to an alternative.

With the constructivist ontology we can make good sense of the �nite levels

of the cumulative hierarchy of sets, discussed in Chapter 1. We could identify

a set with a thought that �picks out� some sets that have already been so

thought. The empty set would then be a thought about nothing. When that

has been created, the singleton of the empty set can be created by thinking

of that thought. Later, the two-element set consisting of the empty set and

the singleton of the empty set can be created by thinking of the two previous

thoughts. And so on. No matter how many sets have been created, the subject

can always go though them in thought, individually selecting or deselecting

each one to create a new set, thus validating the combinatorial conception of

collection characteristic of the classical notion of set. Also here, the idea of

�dependency� can be cashed out temporally.

However, it is only the �nite levels of the hierarchy that can be made sense of

combinatorially. It is not possible to create an in�nite set. Thus this approach

would leave us with a highly impotent theory of collections.

Staying classical, there is an alternative to the combinatorial conception, name-

ly the logical conception, where a collection, now called a �class�, is something

characterized by a criterion of membership: for each open sentence φ (of a

suitable language) with a single free variable there is a class of the objects that

satis�es φ. As already discussed in Chapter 1, incautious use of classes leads

115
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to paradox. The established way of being cautious is to forbid classes from

having classes as elements altogether. They can only have sets as members

and thus, �guratively speaking, form a single layer of collections on top of the

cumulative hierarchy.1

Placing one layer of classes on top of the �nite levels of the cumulative hier-

archy would not get us very far. We would then have in�nite collections, but

only in�nite collections of �nite collections. And at any rate, the method for

avoiding paradox seems ad hoc. We would need some story about the ontology

of classes that explains exactly why it is they can have one kind of collections

as members but not another.2

Brouwer's species are, like classes, characterized by a criterion of membership,

but are allowed to have other species as elements. He de�nes species as �prop-

erties supposable for mathematical entities previously acquired�.3 This needs

a little unpacking.

Properties are, as explained in Chapter 3, constructions that can be �embed-

ded� into some objects and turn out to be impossible to �embed� into other

objects. So a species cannot be identi�ed with its extension. First, because it

is an object in its own right that has to be constructed at some point in time

and does not exist merely in virtue of its extension existing. Second, because

Brouwer does not, of course, believe that it is objectively given what objects

the property is embeddable into; the limits of truth-as-anticipation applies

here as well.

Thus we have half the explanation for the choice of the expression �supposable

for�. A property is created prior to and can exist independently of truths about

what it can and cannot be embedded in. So initially it can just be �supposed�

to hold for some objects. Actual facts about what it holds for come later. The

second half of the explanation is that Brouwer thinks that a property comes

with a domain of objects for which it makes sense to suppose that the property

holds, roughly in the sense that the property of being red is supposable for a

ball but the property of being happy isn't.

The last part of the de�nition, �mathematical entities previously acquired�,

explains what the domain is: a property can only (potentially) apply to objects

1This is the case in von Neumann-Bernays-Gödel set theory and in Morse-Kelley set theory,
see (Mendelson 1997, 225�287).
2For a more extensive overview of di�erent notions of collections see sections 1 and 2 of
(Maddy 1983).
3The quote is from (Brouwer 1948, 1237). See also Brouwer's (1918, 150-151), (1947) and
(1952, 142).
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that were created before the property.4 There are thus three phases in the

construction of a species, that can loosely be characterized as follows:5

1. The objects of a domain are created.

2. The species itself is created.

3. Relations of holds of or cannot hold of are created between the species

and (some of) the objects of the domain.

If a species S1 is itself to be an element of a species S2, then S2 would have to

be introduced after S1. Like the classical mathematician, Brouwer therefore

ends up with a hierarchical notion of collections. There are species of order one,

i.e. species that only have non-species objects as elements, species of order two

that can also have species of order one as elements, species of order three, etc.

Again it is my contention that Brouwer's claims do not stand up to scrutiny,

relative to his own ontological ideas. It is di�cult to reconcile the restriction

that phase 2 has to be after phase 1 with the restriction that phase 3 has to be

after phase 2. To uphold the former restriction, one would presumably have

to claim something along the lines that a property is abstracted from some

objects xx of which it holds and that its identity is dependent on it being

abstracted from exactly xx and not some other objects (otherwise a property

abstracted from some objects created prior to it would also be �supposable

for� further objects created later). But then the property already holds for the

objects xx at stage 2, in con�ict with the latter restriction.

Unless a property is identi�ed with its extension, and Brouwer certainly doesn't

do that, there is no clear reason to think that it can't exist prior to or inde-

pendently of the objects of which it holds. It would seem that it can according

to the intuitionist ontology, where the property is a separate construct. And

it can as well in the non-veri�cationist constructivism developed here, for we

can identify a class (as I choose to call it) with a linguistic rule. As addition

4The intuitionist position is stated more clearly by Heyting (1931, 111): �Eine Spezies
wird, ebensowenig wie eine Menge, als Inbegri� ihrer Elemente betrachtet, sondern mit
ihrer de�nierenden Eigenschaft identi�ziert. Imprädicative De�nitionen sind schon hierdurch
unmöglich, daÿ, wie für den Intuitionisten von selbst spricht, als Elemente einer Spezies nur
vorher de�nierte Gegenstände auftreten können.� (�A species, like a spread, is not regarded
as the sum of its members but is rather identi�ed with its de�ning property. Impredicative
de�nitions are made impossible by the fact, which intuitionists consider self-evident, that
only previously de�ned objects may occur as members of species.�)
5I am following the interpretation in (van Stigt 1990, 338). The reason the characterization
is loose is that the number 54.369 does not have to have been individually constructed along
with each of the other natural numbers in phase 1 for the species of natural numbers to be
created in phase 2. Subtleties about what could have been created prior to the species and
about being intensionally completed as opposed to extensionally completed are necessary
for a full understanding of Brouwer, but are not relevant for present purposes.
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is de�ned by two rules for when a sentence can be made true based on other

sentences that are already true, a class can be de�ned as a rule governing when

a sentence saying that some object is an element of the class can be made true

based on some other sentence being true. As such a linguistic rule can exist

independently of its applications and the truths to which it can be applied,

there is no basis for demanding a hierarchy.

We will use the notation �{x∣φ}� for the class of objects x that satisfy φ, where
φ is a formula with at most the variable x free. The rule then is that a sentence

of the form ψ ∈ {x∣φ} can be made true (false) when the sentence φ(x/ψ) is

already true (false). Identifying the class with the linguistic expression �{x∣φ}�
and this rule, the class can exist prior to the TIC and FIC of any sentence

of the form ψ ∈ {x∣φ}. It does when it has been formulated but the rule has

not yet been applied in any speci�c case. There is therefore no obstacle to a

class becoming a member of itself. This just requires a process starting with

the formulation of a class �{x∣φ}� and continuing with a series of sentences

being made TIC or FIC, culminating in the sentence φ(x/{x/φ}) and then the

sentence {x∣φ} ∈ {x∣φ} being made TIC.

Here is a simple example. Let φ1 be the predicate of being an even number, i.e.

∃m(2 ⋅m = n), while φ2 is the predicate of being a non-empty class, formalized

∃y(y ∈ x). First the sentence 2 ⋅3 = 6 is made true as explained in the previous

chapter. Then, by one of the two rules for the existential quanti�er in the

previous chapter, the sentence ∃m(2 ⋅ m = 6) is made true. The latter is

φ1(n/6), so after that, the sentence 6 ∈ {n∣φ1} can be made true using the

class rule. Employing the existential rule again, the sentence ∃y(y ∈ {n∣φ1})
can be made true. This sentence is again identical to φ2(x/{n∣φ1}), ergo
{n∣φ1} ∈ {x∣φ2} can be made true. Using a version of the existential rule

with classes in place of natural numbers, we can make ∃y(y ∈ {x∣φ2}), which
is identical to φ2(x/{x/φ2}), true. Then it is possible to make the class of

non-empty classes a member of itself: {x∣φ2} ∈ {x∣φ2}.

When we conceive of classes this way, it is thus legitimate to employ impred-

icative de�nitions like �the class of all those classes that...�. We are not in

con�ict with the vicious circle principle, which in Gödel's (1983, 454) formu-

lation reads �no totality can contain members de�nable only in terms of this

totality�, for a class is not an extensional �totality� but an intensional criterion

of membership. For the same reason, the membership relation does not have

to be well-founded, even though the dependency relation between truths about

membership does.

Language playing a constitutive role, meaning that a class is not primarily an

extensional collection, but a linguistic entity, identi�ed with its name plus its
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criterion of membership, has the consequence that identity of classes is not a

matter of coextensionality (although a relation of equality can be de�ned from

that) but is an intensional relation: two classes are identical if they have the

same membership criterion. Another consequence is that there are no classes

except those that can be described in language.

To sum up: I agree with Brouwer that we should work with a notion of collec-

tion that is distinguished by criteria of membership, rather than being combi-

natorial in nature. I disagree with him on two important points. My concept of

classes will allow for circularity, while Brouwer's species are typed. And where

membership for Brouwer is a matter of embeddability of one non-linguistic con-

struction into another, it will, in the class theory to be developed, be a matter

of sentences asserting membership being made true on the basis of other sen-

tences being true, similarly to the rule-based arithmetic of Section 4.4.

5.2 Kripke's theory of truth

A formal theory of classes that codi�es the above example already exists. It

was formulated by Maddy in her two papers (1983) and (2000), building on

Kripke's (1975) theory of truth. The plan for the rest of this chapter is to

introduce Kripke's theory, introduce a theory that resembles Maddy's, expand

it into a theory that also covers real numbers, discuss some problems that

they both have, and study diagonalization in this setting. Dealing with the

problems will be the aim of Chapters 6 and 7.

More formal precision will be needed in this chapter than earlier in the dis-

sertation, so let us carefully specify Kripke's theory. It is given in classical set

theory. We begin with the syntax of the language: For each n ∈ N, there is

a countable set Pn of ordinary n-ary predicates. In addition there is the

truth predicate T . We also have a countable in�nite set C of constants and
a countable set of variables. Variables and constants are called terms.

The set of formulae is de�ned recursively:

� If P is an n-ary predicate (ordinary or the truth predicate) and t1, . . . , tn
are terms, then P (t1, . . . , tn) is a formula.

� If φ and ψ are formulae, then ¬φ and φ ∨ ψ6 are formulae.

� If φ is a formula and x a variable, then ∃xφ is a formula.

� Nothing is a formula except by virtue of the above clauses.

6To be precise this should be �(φ∨ψ)�, but to improve on readability I will be systematically
sloppy with brackets.
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Conjunction, the conditional, the bi-conditional and universal quanti�cation

are de�ned as abbreviations in the usual way. A formula is a sentence if it

does not contain any free variables. Let S be the set of sentences.

A model is a pair M = (D,I) such that

� D, the domain, is a superset of S,

� I, the interpretation function, is a function de�ned on ⋃n∈NPn ∪ C
such that

� for every P ∈ Pn, I(P ) ⊆Dn,

� for every c ∈ C, I(c) ∈D, and

� {I(c) ∣c ∈ C } =D.

We dispense with the technicalities of Gödel numbers and arithmetisation by

facilitating self-reference simply by letting the domain include all sentences

of the language and making assumptions about the model when needed, e.g.

that for some constant cl it holds that I(cl) = ¬T (cl), i.e. that there is a liar

sentence.7

In accordance with the thesis from the last chapter that it is possible to have

names for everything, it has been assumed that there is a constant for each

object in the domain. Thus the semantics of the quanti�er can be de�ned

substitutionally.

The predicate T is interpreted by an evaluation E = (T,F ) where T and F

are subsets of S, called respectively the truth set of E and the falsity set

of E .8 If a sentence φ is in T (F ) we can express this by saying that φ is true

(false) in E . We say that E is consistent if T and F are disjoint. We also

say that an evaluation E ′ = (T ′, F ′) extends E if T ⊆ T ′ and F ⊆ F ′.

The evaluation with respect to (the model M and) the evaluation

E = (T,F ), in symbols EE ,9 is de�ned as (TE , FE), where TE and FE are de�ned
recursively by the following clauses:

1) If ξ is of the form P (c1, . . . , cn) where P is an ordinary n-ary predicate

and c1, . . . , cn are constants, then

� ξ ∈ TE if (I(c1), . . . , I(cn)) ∈ I(P ), and
7I'm here following (Gupta 1982).
8The letter �T � is thus used both for the truth predicate in the object language and the set
of true sentences in the meta-language. This should not cause confusion.
9Since the evaluation is relativised to a model, it would be more correct to use the notation
�EM,E � instead of �EE �. But we will never consider more than one speci�c model at a time,
and hence the subscript indicating the model can be dispensed with in the interest of simple
notation. For the same reason, universal quanti�cation over models will be implicit in much
of what follows.
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Figure 5.1: Strong Kleene truth tables

� ξ ∈ FE if (I(c1), . . . , I(cn)) ∉ I(P ).

2) If ξ is of the form ¬φ where φ is a sentence, then

� ξ ∈ TE if φ ∈ FE , and
� ξ ∈ FE if φ ∈ TE .

3) If ξ is of the form φ ∨ ψ where φ and ψ are sentences, then

� ξ ∈ TE if φ ∈ TE or ψ ∈ TE , and
� ξ ∈ FE if φ ∈ FE and ψ ∈ FE .

4) If ξ is of the form ∃xφ where x a variable and φ is a w� with at most x

free, then

� ξ ∈ TE if there exists a c ∈ C such that φ(x/c) ∈ TE , and
� ξ ∈ FE if for all c ∈ C, φ(x/c) ∈ FE .

5) If ξ is of the form T (c) where c is a constant, then

� ξ ∈ TE if there is a sentence ξ′ such that I(c) = ξ′ and ξ′ ∈ T ,
� ξ ∈ FE if there is a sentence ξ′ such that I(c) = ξ′ and ξ′ ∈ F , and
� ξ ∈ FE if there is no sentence ξ′ such that I(c) = ξ′.10

For ease of reference, the semantics of the connectives (primitive as well as

de�ned) is put in schematic form in Figure 5.1. Here, the symbols ⊺, �, and +
are used for true, false, and unde�ned respectively.

EE is the �jump� function applied to the evaluation E . Beginning from the

empty evaluation, iterating this jump function and collecting up at limit or-

dinals, we get the Kripke hierarchy: for every ordinal α the evaluation at

10This last bullet point says that if c does not denote a sentence but something else, then a
sentence saying, that the object denoted by c is true, is false. Alternatively it could be left
unde�ned; nothing important hinges on it.
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level α, Eα, is de�ned like this:

Eα =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∅,∅) if α = 0

EEα−1 if α is a successor ordinal

(⋃η<α TEη ,⋃η<α FEη) if α is a limit ordinal ≠ 0

The sequence of evaluations is monotonic in the sense that it holds for all ordi-

nals α and β that if α < β then Eβ extends Eα (Kripke 1975, 703). It reaches a

�xed point where no further sentences are added to the truth set or the falsity

set: there is an ordinal α such that Eα+1 = Eα � and consequently, for all larger

ordinals β, Eβ = Eα (Kripke 1975, 704�705). This is the �nal interpretation

of T , and it is consistent. According to Kripke's theory, a sentence is true if

it is in the truth set of this evaluation and false if it is in the falsity set. If a

sentence is in neither, we say that its truth value is unde�ned, or in short that

the sentence is unde�ned.

We will also say that a sentence is true (false; unde�ned) at level α if it

is in the truth set (falsity set; neither) of Eα, and that it ismade true (false)

or becomes true (false) at level α if it is true (false) at level α and not at

any lower level.

The theory as presented here is the strong Kleene, minimum �xed point version

of Kripke's theory. In this chapter, where we will not be concerned with other

versions, it will simply be referred to it as �Kripke's theory�. In the following

chapters, where we will, it will be called the �basic version (of Kripke's theory)�.

Kripke can celebrate two great victories compared to the Tarskian theory with

which he is primarily contrasting his own work. The �rst is that the theory

validates the Tarskian T-schema inside the object language: T (c) is true if and
only if I(c) is true (Kripke 1975, 702, 705).11 The second is that the sentences

of the Watergate example (Kripke 1975, 691) and similar examples get the

intuitively correct truth value. One version of the example is as follows. Jones

asserts exactly one sentence about Watergate, namely

J1: Nixon has spoken falsely about Watergate

while Nixon asserts

N1: Everything Jones says about Watergate is true

11Recall the distinction made in Section 4.1 between 1) The sentence �`the star has �ve
vertices' is true�, 2) the sentence �the star has �ve vertices� and 3) the state of a�airs that
the star has �ve vertices. It was argued that the relationship that was relevant for the
question of the learnability of truth-conditional semantics was that between 2) and 3). In
contrast, we are here talking about the relationship between 1) and 2).
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and

N2: My administration is not involved in the break in at Watergate

and nothing else on the subject. It is not possible for all of these sentences

to be reconstructed in languages of the Tarski hierarchy.12 For N1 predicates

truth of J1 and must therefore be formulated in a language that, relative to

the language in which J1 is formulated, is on a meta-level. But conversely,

the truth predicate (pre�xed by a negation) must be applied to a name of N1

in the formulation of J1, so J1 must be formulated in a meta-language to the

language of N1. But intuitively this system of sentences is not pathological.

Intuitively, J1 and N1 are true because N2 is false: the falsity of N2 is su�cient

to make J1 true and that is again su�cient to make N1 true.

Kripke's theory is in line with this intuitive verdict. The sentences can be

formalised as

∃x(N(x) ∧ ¬T (x)),(J1)

∀x(J(x) → T (x))(N1)

and

¬W (a),(N2)

whereN , J andW are unary predicates meaning �is an utterance about Water-

gate made by Nixon�, �is an utterance about Watergate made by Jones� and �is

involved in the break in at Watergate� respectively, and a is a constant denoting

Nixon's administration. We therefore have I(J) = {(J1)}, I(N) = {(N1),(N2)}
and a ∈ I(W ). (N2) is made false at level 1. If n2 is a constant denoting this

sentence, then T (n2) becomes false at level 2 and hence at the same level

¬T (n2), N(n2) ∧ ¬T (n2) and (J1) are made true. Then at level 3, this makes

all sentences of the form T (j1), where j1 is a constant referring to (J1), true.

So at level 3, J(j1) → T (j1) also becomes true, and for any constant c not

referring to (J1), J(c) → T (c) was made true already at level 1 by the falsity

of the antecedent. Ergo, (N1) also becomes true at level 3.

However, Kripke's theory su�ers from the problem that correct generalizations

about the semantics tend to come out unde�ned when formulated in the object

language itself. A signi�cant example is that even though the Tarskian T-

schema is validated in the sense explained above, the object language sentence

that expresses that fact is unde�ned. The sentence is ∀x(P (x) → T (x)) where
12See (Tarski 1933) and (Tarski 1944).
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P is a unary predicate, the interpretation of which is the set of all sentences

of the form T (cφ) ↔ φ, where again cφ is a constant denoting the sentence φ.

There are two reasons for this failure, each individually su�cient. The �rst

is that there are unde�ned instances of T (cφ) ↔ φ, namely those where φ is

unde�ned. The second (which is a special case of the �rst, but worth singling

out) is that the truth value of ∀x(P (x) → T (x)) depends on itself: the sentence
is itself one of the sentences that can take the place of φ in T (cφ) ↔ φ, thus

for it to become true at one of Kripke's levels, it would have to be true or false

at a lower level. The same problem (although of course with di�erent speci�c

sentences) exists for the theory of classes to be formulated in this chapter. It

will be addressed in the �nal two chapters. Further problems of expressibility

will be mentioned in Chapter 6.

Another problem is that the theory relies on the classical theory of trans�nite

ordinals and, more generally, classical set theory, which we found reasons to

distrust in Chapter 1. This problem will be solved in Chapter 7, where a

modi�ed theory of classes will be developed that is in line with the TIC/TAP

doctrine of truth. For now we will pretend that the levels make sense as

instances of time, in order to focus on other things �rst. We will both pretend

that the trans�nite levels can be understood as instances of time that come

after an in�nity of other instances of time and that in�nitely many sentences

can be made true or false at one instant of time, for that is what happens at

each level.

5.3 A theory of classes and real numbers

In parallel to Kripke's theory, we will formulate a theory of classes where the

distinctive rule is that when φ(v/ψ) is true (false) at some level, ψ ∈ {v∣φ}
will be true at the next level. We will use it to say something about real

numbers, real numbers being de�ned as a certain kind of classes, so that we

have an alternative to Brouwer's free choice sequence-based account that was

discussed and rejected in Chapter 2. In that endeavor we will take quite a

bit of inspiration from Bishop (1967).13 Bishop de�nes a real number as a

sequence {xn} of rational numbers such that ∣xm − xn∣ ≤ m−1 + n−1 for all

natural numbers n and m (p. 15), and a sequence as �a rule which associates

to each positive integer n a mathematical object an� (p. 12), and so will we.

We thus need natural numbers and (more generally) rational numbers. We

could take the rules constituting arithmetic from the previous chapter and

13Bishop developed a mathematics that can be described as the intersection of classical
mathematics and intuitionism. We will not be concerned with his theory as such, and no
exegetical claims will be made, we will just take the bits we can use.
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incorporate them into the formal theory for classes. However, formulating

the theory will be complicated enough even without, so instead we just import

arithmetic in a �black box� in the form of an interpretation function. Further, I

trust that the reader will grant me that having vindicated classical arithmetic,

the classical theory of rational numbers could also be recovered, and we will

therefore do the same with rationals.

We will make use of a multi-sorted language. The syntax is speci�ed as follows.

First, by way of constants, we have one numeral, called a rational numeral,

for each rational number. A rational numeral is also called a natural numeral

when it is for a natural number (not including 0). Second, there are three

disjoint, countable sets of natural variables, rational variables and class

variables. The intention is that the natural variables range over the natural

numerals, the rational variables range over the rational numerals and the class

variables range over the classes (to be de�ned), but that is made precise below.

For numerals and variables we use these notational conventions: n, m and l

with or without some subscript are natural variables; q, x and y with or without

some subscript are rational variables; and a, b, c, d and σ with or without some

subscript are class variables. For speci�c numerals we simply use the normal

arabic numerals or the normal fraction notation, while capital letters are used

as meta-language variables ranging over object language numerals and classes.

In that case the same notational conventions regarding which letters are used

for natural and rational numerals and classes apply. Subscripts are used purely

as a mnemonic device. So for instance �xn−1� is meant as an unanalyzable

symbol, i.e. �n� is not itself a variable into whose position a constant can be

substituted.

We also have countably many predicates. For present purposes, predicates

that apply to classes (and class variables), and only such as are unary, will do.

We de�ne the set of terms to be the smallest set which includes the rational

numerals and the rational variables and also contains the following whenever

t1, . . . , tn are terms and t is a natural numeral: t1 + t2, t1 − t2, t1 ⋅ t2, t1/t, tt1,
t−t1 , min{t1, . . . , tn}, max{t1, . . . , tn} and ∣t1∣. The set of natural terms is

the smallest set containing the natural numerals and the natural variables and

containing t + t′ and t ⋅ t′ whenever t and t′ are natural terms.

The set of formulae and the set of classes14 are de�ned by simultaneous

recursion, like this:

14They are called �classes� instead of �class terms� because the latter would give the impres-
sion that the linguistic expression refers to something di�erent from itself. But the point
is that the class just is the linguistic expression together with the rules that govern it (to
follow).
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� If t1 and t2 are terms, then t1 < t2, t1 ≤ t2 and t1 ≡ t2 are formulae.

� If t1 is a term and t2 is a class or class variable, then t1 ∈ t2 is a formula.

� If t1 and t2 are each either a class or a class variable, then t1 ≡ t2 and

t1 ∈ t2 are formulae.

� If P is a predicate and t1 is a class or a class variable, then P (t1) is a

formula.

� If φ and ψ are formulae, then ¬φ and φ ∨ ψ are formulae.

� If φ is a formula and v a variable (of any kind), then ∃vφ is a formula.

� If φ is a formula and v a variable (of any kind), then {v∣φ} is a class (φ

is then called the de�ning formula of the class).

� Nothing is a formula or a class except by virtue of the above clauses.

A notion of complexity of formulae will be needed. A rigorous de�nition can be

dispensed with in favor of these stipulations: A formula constructed according

to one of the �rst four bullet points has minimal complexity (even if built using

complex classes). And if it is bullet �ve or six that has been used in �the last

step� of the construction, the formula in question has higher complexity than

both φ and (in the case of bullet �ve) ψ.

The formulas t1 > t2 and t1 ≥ t2 of course mean the same as t2 < t1 and t2 ≤ t1
respectively. The other connectives and the universal quanti�er are again

de�ned in the usual way. We also de�ne the symbol ∉, restricted quanti�cation

and the notation for unique existence (∃!vφ) as usual.

Free and bound occurrences of variables are de�ned as usual, we just need

to stipulate that v is bound in {v∣φ}. A formula is called a sentence and a

term or a class is called closed if it does not contain any free variables (in the

case of terms this simply means that it contains no variables at all, as there is

nothing in a term itself that can bind a variable). Finally, again let S be the

set of sentences.

To specify the semantics, we start out with an interpretation function, I,

with the union of the set of closed terms and the set of predicates as domain.

It interprets closed terms as rational numbers. It is de�ned recursively in the

obvious way. So something like ∣19+2−7∣ means exactly what it looks like. The

interpretation function interprets predicates as subsets of the set of classes.

We want the relation symbol �≡� to express intensional identity. Between closed
terms that is accomplished straightforwardly by letting a sentence claiming two

terms to be related by ≡ to be true if the two relata are given the same value

by the interpretation function and false otherwise.
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Having �≡� express intensional identity between classes is a little more compli-

cated.15 This is, intuitively, a more inclusive relation than syntactic identity,

for e.g. the class {n1∣∃n2(n2 ⋅2 ≡ n1)} and the class {n1∣∃n3(42 ⋅n3 ≡ n1)} clearly
mean the same thing, namely �the class of even numbers�. We capture that

intuition in a de�nition of synonymy between classes, and in the formulation

of that de�nition we employ an auxiliary notion of synonymy between terms:

Two terms t and t′ are synonymous if n1, . . . , ni, q1, . . . , qj are the vari-

ables which occur in either one of them and for any choice of constants

N1, . . . ,Ni,Q1, . . . ,Qj , it is the case that

I(t(n1/N1) . . . (ni/Ni)(q1/Q1) . . . (qj/Qj))

is identical to

I(t′(n1/N1) . . . (ni/Ni)(q1/Q1) . . . (qj/Qj)).

Two closed classes are synonymous if they are related by the transitive and

re�exive closure of the (obviously symmetrical) relation de�ned by stipulating

that C is related to C ′ if one of these conditions is satis�ed: 1) C ′ is the

result of substituting an occurrence of a term t in C with a synonymous term

t′. 2) C ′ is the result of substituting all occurrences of a variable v in C

which are bound by the same quanti�er or class abstractor (i.e. in the symbol

combinations �∃v� and �{v∣�) with a variable v′ of the same kind (natural,

rational or class) such that no substituted occurrence of v′ is bound by some

quanti�er or class abstractor which the corresponding occurrence of v was not

bound by.

So returning to the example above, {n1∣∃n2(n2 ⋅ 2 ≡ n1)} is synonymous

with {n1∣∃n3(42 ⋅ n3 ≡ n1)} according to this de�nition, because the class

{n1∣∃n2(42 ⋅ n2 ≡ n1)} results from the former by substitution of a synony-

mous term (for any constant that is substituted into the position of n2 in
4
2 ⋅n2

and n2 ⋅2, the interpretation function gives the same value when applied to the

two results) and the latter results from this �intermediate class� by uniform

substitution of a variable.16

15The symbol �≡� is used because extensional identity between classes, for which the symbol
�=� would be proper, could be added by de�nition. In that case it would be a relation whose
extension would be determined only gradually in the iterative process, unlike the intensional
identity which is �xed from the outset. In other words, sentences of the form C ≡ C′ are all
made true or false at level 1, while sentences of the form C = C′ could be given a truth value
at any level or remain undetermined through all the levels. (In fact, it is a more precise way
to characterize ≡ to say that it identi�es what can be identi�ed at level 0, than to say that
it is intensional.)
16The de�nition of synonymity is good enough for present purposes and its not aiming
at being more than that. For instance, {n1∣∃n2(n2 ⋅ 2 ≡ n1)} is not synonymous with
{n1∣∃n2(n1 ≡ n2 ⋅ 2)} according to this de�nition.
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The de�nitions of an evaluation, an evaluation being consistent and one eval-

uation extending another are as before.

The Kripkean �jump� is speci�ed by de�ning the evaluation with respect

to the evaluation E = (T,F ), EE , as (TE , FE), where TE and FE are de�ned
by recursion on the complexity of the sentence as follows:17

E1) If ξ is of the form t < t′ or t ≤ t′, respectively, where t and t′ are closed
terms, then

� ξ ∈ TE18 if I(t) is less than I(t′) or I(t) is less than or equal to I(t′),
respectively, and

� ξ ∈ FE otherwise.

E2) If ξ is of the form t ≡ t′ where t and t′ are closed terms, then

� ξ ∈ TE if I(t) and I(t′) are identical, and
� ξ ∈ FE otherwise.

E3) If ξ is of the form s ≡ s′ where s and s′ are closed classes, then

� ξ ∈ TE if s and s′ are synonymous, and

� ξ ∈ FE otherwise.

E4) If ξ is of the form t ∈ {n∣φ} where t is a closed term and {n∣φ} is a closed
class, then

� ξ ∈ TE if t is a natural term and φ(n/t) ∈ T , and
� ξ ∈ FE if t is not a natural term or φ(n/t) ∈ F .

E5) If ξ is of the form t ∈ {q∣φ} where t is a closed term and {q∣φ} is a closed

class, then

� ξ ∈ TE if φ(q/t) ∈ T , and
� ξ ∈ FE if φ(q/t) ∈ F .

E6) If ξ is of the form t ∈ {c∣φ} where t is a closed term or a closed class and

{c∣φ} is a closed class, then

� ξ ∈ TE if t is a class and φ(c/t) ∈ T , and
� ξ ∈ FE if t is a term or φ(c/t) ∈ F .

E7) If ξ is of the form P (t) where P is a predicate and t is a closed class,

then
17Clauses E8�E12 make reference to TE and FE , but only with respect to less complex
sentences than the one under consideration. By clauses E4�E6 a sentence may �gain� its
truth value from a more complex sentence, but here it is only the truth value as given by
E = (T,F ) that is referred to. In short, the truth value of a sentence only depends on the
previous level and sentences of lower complexity. Hence, as stated, the de�nition is simply
by recursion on the complexity of the sentence.
18In this list the symbol �∈� is used both in the object language and the meta-language but
this should cause no confusion.
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� ξ ∈ TE if I(c) ∈ I(P ), and
� ξ ∈ FE if I(c) ∉ I(P ).

E8) If s is of the form ¬φ where φ is a sentence, then

� s ∈ TE if φ ∈ FE , and
� s ∈ FE if φ ∈ TE .

E9) If ξ is of the form φ ∨ ψ where φ and ψ are sentences, then

� ξ ∈ TE if φ ∈ TE or ψ ∈ TE , and
� ξ ∈ FE if φ ∈ FE and ψ ∈ FE .

E10) If ξ is of the form ∃nφ where φ is a formula with at most n free, then

� ξ ∈ TE if there exists an N such that φ(n/N) ∈ TE , and
� ξ ∈ FE if for all N , φ(n/N) ∈ FE .

E11) If ξ is of the form ∃qφ where φ is a formula with at most q free, then

� ξ ∈ TE if there exists a Q such that φ(q/Q) ∈ TE , and
� ξ ∈ FE if for all Q, φ(q/Q) ∈ FE .

E12) If ξ is of the form ∃cφ where φ is a formula with at most c free, then

� ξ ∈ TE if there exists a C such that φ(c/C) ∈ TE , and
� ξ ∈ FE if for all C, φ(c/C) ∈ FE .

Relative to this new de�nition, the evaluation at level α, Eα, is de�ned as

in Kripke's theory. The de�nitions of a sentence being true in an evaluation,

becoming true at a level, etc. also carries over from Section 5.2.

We can then go on to prove that this sequence of evaluations, like Kripke's, is

monotonically increasing, that it consists solely of consistent evaluations and

that it reaches a �xed point.

Lemma 5.1. For all ordinals α and β such that α is smaller than β, the

evaluation Eβ extends Eα.

Proof. This is proved by complete induction on β. The base case is vacuous,

for if β is 0 then there are no smaller ordinals, and the limit case is trivial. So

assume that β is a successor ordinal. We prove that Eβ is an extension of Eβ−1

from which the conclusion follows from the induction hypothesis. Assume that

ξ is true in Eβ−1. We then need to show that ξ is true in Eβ (the case of falsity

is similar), and this is done by inner induction on the complexity of ξ.

If ξ is of the form t < t′ where t and t′ are closed terms, then it follows from E1

that I(t) is smaller than I(t′) so ξ is true in Eβ . The argument is analogous

for the other forms mentioned in E1�E3 and E7.
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If ξ is of the form t ∈ {n∣φ} where t is a closed natural term and {n∣φ} is a

closed class then by E4, if β − 1 is also a successor ordinal, φ(n/t) is true in

Eβ−2, so by the outer induction hypothesis, φ(n/t) is also true in Eβ−1, and

therefore t ∈ {n∣φ} is true in Eα. If instead β − 1 is a limit ordinal then either

it is equal to 0, in which case the conclusion is trivial, or there is an ordinal

γ which is smaller and a successor, such that t ∈ {n∣φ} is true in Eγ . Then it

follows that φ(n/t) is true in Eγ−1 and hence � again by the outer induction

hypothesis � in Eβ−1, so t ∈ {n∣φ} is true in Eβ . This type of argument works

for the forms mentioned in E5 and E6 as well, so the base case is covered.

The induction step in the inner induction consists of the forms mentioned in

E8�E12 of which we just treat E9 explicitly. So assume that ξ is of the form

φ ∨ψ where φ and ψ are sentences. Then by E8, either φ is true in Eβ−1 or ψ

is true in Eβ−1, so it follows using the inner induction hypothesis that either

φ is true in Eβ or ψ is true in Eβ , and ergo φ ∨ ψ is true in Eβ .

Theorem 5.2. For every ordinal α, the evaluation Eα is consistent.

Proof. The structure of this proof is the same as in the previous: outer com-

plete induction on α and, for the successor case, inner induction on complexity

of formula. The case where α is 0 is trivial. And the limit case is easiest done

by reductio: Assume that Eα is inconsistent and let φ be a sentence which is

both true and false in Eα. Then there are ordinals β and β′ smaller than α

such that φ is true in Eβ and false in Eβ
′
. Let β′′ be the largest of β and β′.

Then it follows from the Lemma that φ is both true and false in Eβ
′′
, making

Eβ
′′
inconsistent. This contradicts the induction hypothesis.

Now let α be a successor ordinal and φ a sentence. If φ is of one of the

forms mentioned in E1�E3 or E7, it is obvious that φ can not both be true

and false in Eα, for the criteria for being made true and false in these clauses

are contradictory. In each of E4�E6 it is seen that for φ to be both true

and false in Eα there would have to be some sentence ψ which was both true

and false in Eα−1, contradicting the outer induction hypothesis. And in E8�

E12, φ could only be both true and false in Eα if some sentence ψ of lower

complexity was also both true and false in Eα, contradicting the inner induction

hypothesis.

Theorem 5.3. A unique evaluation E exists such that for some ordinal α, Eα

is identical to E, and for all ordinals β larger than α, Eβ is also identical to E.

Proof. Uniqueness follows trivially from existence, and existence follows from

monotonicity together with the fact that there are only countably many sen-

tences. For according to the Lemma, the sequence of evaluations is increasing,
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which means that there cannot be a larger number of di�erent evaluations in

the sequence than there are sentences. But it cannot be strictly increasing, i.e.

it cannot be the case that for any pair of distinct ordinals α and β, the eval-

uations Eα and Eβ are di�erent, for then there would be uncountably many

evaluations (as many as there are ordinals). So for some α, Eα is identical to

Eα+1. And then we can prove by induction that for any β larger than α, Eβ is

identical to Eα: If β is a successor ordinal then Eβ is identical to EEβ−1 which

by the induction hypothesis is identical to EEα which equals Eα+1 alias Eα.

And if β is a limit ordinal, then it follows that the truth set of Eβ is a union

of sets which are identical to the truth set of Eα (by the induction hypothesis)

or subsets thereof (by the Lemma), and similarly for the falsity set, so Eβ is

identical to Eα.

We call a sentence true (false) simpliciter if it is true (false) in the E of the

Theorem, and unde�ned if it is neither true nor false.

Notice that the proof of Theorem 5.3 relies on the Cantorian theory of the

trans�nite which has been rejected. It needs to be shown that the theory can

be reconstructed without this reliance. But as already noted, this challenge is

postponed.

5.4 Unrestricted comprehension

With the presentation of the formal system completed, we can now go on to

investigate its properties. The �rst subject will be comprehension, for which

a simple theorem holds:

Theorem 5.4. For every formula φ with exactly one free variable n and every

N , φ(n/N) is true i� N ∈ {n∣φ} is true. Similarly for rational variables and

numerals and for class variables and classes.

Proof. Assume that φ(n/N) is true. There is a level at which φ(n/N) is made

true. By E4, N ∈ {n∣φ} is true at the next level, so because of monotonicity

it is true in the �xed point. Now assume instead that N ∈ {n∣φ} is true. The

level at which it is made true must be a successor level, so at the previous level

φ(n/N) is true. And again the truth of φ(n/N) in the �xed point follows from

Lemma 5.1.

This result matches the unrestricted validity of the T-schema in Kripke's the-

ory. In that theory the paradoxicality of semantic self-reference is avoided by

having the Liar and related sentences unde�ned. It is similar here when it

comes to those �paradoxical� classes that the classical restriction of compre-
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hension is designed to eliminate. We will have a look at Russell's Class and

the class of all classes but start out softly with the empty class.

An empty class can be given as {c∣¬(c ≡ c)}. For any closed class C, ¬(C ≡ C)
is made false at level 1 by E3 and E8. So at level 2, C ∈ {c∣¬(c ≡ c)} is made

false by E6.

Notice that it is �an empty class� and not �the empty class�. The class

{c∣0 ≡ 1)} is also empty and it is di�erent from {c∣¬(c ≡ c)} because they

are di�erent as syntactic objects.

In this theory there is no problem in de�ning the dual of empty classes, a class

of all classes: {c∣c ≡ c}. In strict analogy, we have that for any closed class C,

C ≡ C is made true at level 1, so that at level 2, C ∈ {c∣c ≡ c} is made true.

Theorem 5.2 assures us that this does not give rise to a contradiction.

In particular, this class of all classes is an element of itself: {c∣c ≡ c} ∈ {c∣c ≡ c}.
Self-membership is possible and we can de�ne a class of all classes that are

elements of themselves. Or, more interestingly, a class of all classes that are

not elements of themselves, i.e. Russell's Class: {c∣c ∉ c}. At level 3 it becomes

true that {c∣¬(c ≡ c)} is an element of Russell's Class and false that {c∣c ≡ c}
is. The sentence saying that Russell's Class is an element of itself is {c∣c ∉ c} ∈
{c∣c ∉ c}. By E6, this sentence depends for its truth value on the sentence

{c∣c ∉ c)} ∉ {c∣c ∉ c}, i.e. the sentence claiming that Russell's Class is not

an element of itself. And from E8 it is seen that this sentence depends on

the original sentence.19 So the circularity implies (by an induction argument)

that neither of the two sentences are ever given a truth value. Therefore, the

parallel to Kripke's theory is perfect: as the Liar is meaningful and doesn't

lead to inconsistency in Kripke's theory because it is unde�ned, Russell's Class

exists and does not lead to inconsistency in this theory because it is unde�ned

whether it is an element of itself.

Let us return to classes of all classes. There are two reasons why a set of

all sets cannot be �allowed� to exists in classical mathematics. The �rst is

that if it does, then it follows from the axiom of restricted comprehension that

Russell's Set also exists, which leads to paradox. We have just seen how that

problem is defused here. But the second reason is that diagonalization shows

that the power set of a set is always larger than that set, so if there is a set of

all sets, which by its nature is a superset of its own power set, then it is larger

than itself. In the sequel we will de�ne reals and sequences of reals as certain

19Here �φ depends on ψ� means that φ will only become true or false at some level, if
ψ has a truth value at the same or the previous level. We will not need a de�nition of
dependency that is adequate for more than just this example, so we shall not try to come up
with one. Such de�nitions are given in (Yablo 1982), (Bolander 2003), (Leitgeb 2005) and
(Hansen 2014).
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kinds of classes, and for a given sequence of reals de�ne the diagonalization

of that sequence, again following Bishop, and we will show that that problem

also does not arise in this setting.

A more sustained discussion of failure of bivalence will follow in Chapter 7, in

particular a discussion of Russell's Class, henceforth denoted �R�.

5.5 The basics of classes and sequences

The de�nition of diagonalization and the theorem and proof concerning it

are quite complex. Therefore, we will build up to them gradually and use

the Fibonacci sequence and square roots as examples to introduce some of

the techniques in a simpler setting. First, de�nitions of the notations for

ordered pairs and triples and a lemma about them: {t′, . . . , t(n)} is de�ned

to be {q∣q ≡ t′ ∨ . . . ∨ q ≡ t(n)} when t′, . . . , t(n) are terms and q is a rational

variable that does not appear in any of these. If instead t′, . . . , t(n) are classes

or class variables, then t ≡ {t′, . . . , t(n)} is {c∣c ≡ t′ ∨ . . . ∨ c ≡ t(n)} with a

similar restriction on which class variable c can be. With that, the ordered

pair ⟨t, t′⟩ can be introduced as {{t},{t, t′}}, and the ordered triple ⟨t, t′, t′′⟩
as ⟨{t}, ⟨t′, t′′⟩⟩, when t, t′ and t′′ are terms.

Lemma 5.5. Let t1, t′1, t2 and t′2 be closed terms. The sentence ⟨t1, t′1⟩ ≡
⟨t2, t′2⟩ is made true or false at level 1; true if I(t1) equals I(t2) and I(t′1)
equals I(t′2), false otherwise. Similar for ⟨t1, t′1, t′′1 ⟩ ≡ ⟨t2, t′2, t′′2 ⟩.

Proof. We just prove the case of ⟨t1, t′1⟩ ≡ ⟨t2, t′2⟩. Written out in full that

sentence looks like this:

{c1∣c1 ≡ {q1a∣q1a ≡ t1} ∨ c1 ≡ {q1b∣q1b ≡ t1 ∨ q1b ≡ t′1}} ≡
{c2∣c2 ≡ {q2a∣q2a ≡ t2} ∨ c2 ≡ {q2b∣q2b ≡ t2 ∨ q2b ≡ t′2}}

As there are no variables in t2 and t′2, the right-hand side class is synonymous

with the result of replacing q2a with q1a, q2b with q1b and c2 with c1. That class

is again synonymous with the left-hand side class if and only if I(t1) equals

I(t2) and I(t′1) equals I(t′2), so in that case the sentence is made true at level

1 by E3 and otherwise false.

The Fibonacci sequence is 0,1,1,2,3,5,8,13,21, . . . where every number except

the two �rst are the sum of the two previous. We will model a sequence as a

rule that describes a class of ordered pairs such that for each natural number

there is a unique pair with that number as �rst element in the class. So the

rule for the Fibonacci sequence should describe ⟨1,0⟩, ⟨2,1⟩, ⟨3,1⟩, etc. We
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can identify the Fibonacci sequence with F ∶= {cn∣∃σ(P (σ) ∧ F ′)} where we

de�ne F ′ to be

cn ≡ ⟨1,0⟩ ∨ cn ≡ ⟨2,1⟩ ∨ ∃cn−2 ∈ σ, cn−1 ∈ σ,n,mn−2,mn−1

(cn−2 ≡ ⟨n − 2,mn−2⟩ ∧ cn−1 ≡ ⟨n − 1,mn−1⟩ ∧ cn ≡ ⟨n,mn−2 +mn−1⟩)

and where P is a predicate whose interpretation is the singleton of F .20

The sentence F ′(σ/F)(cn/⟨1,0⟩) is a disjunction, one of whose disjuncts is

⟨1,0⟩ ≡ ⟨1,0⟩. It is therefore made true by E3 and E9 at level 1. The same

holds for F ′(σ/F)(cn/⟨2,1⟩). So ∃σ(P (σ) ∧ F ′(cn/⟨1,0⟩)) and ∃σ(P (σ) ∧
F ′(cn/⟨2,1⟩)) are also true at level 1 by virtue of E7, E8, E921 and E12. Ergo

⟨1,0⟩ ∈ F and ⟨2,1⟩ ∈ F are made true by E6 at level 2.

Lemma 5.5 tells us that at level 1, the sentence

⟨1,0⟩ ≡ ⟨3 − 2,0⟩ ∧ ⟨2,1⟩ ≡ ⟨3 − 1,1⟩ ∧ ⟨3,1⟩ ≡ ⟨3,0 + 1⟩

is also made true. So by repeated applications of E8, E9, E10 and E12, the

sentence

∃cn−2 ∈ F , cn−1 ∈ F , n,mn−2,mn−1

(cn−2 ≡ ⟨n − 2,mn−2⟩ ∧ cn−1 ≡ ⟨n − 1,mn−1⟩ ∧ ⟨3,1⟩ ≡ ⟨n,mn−2 +mn−1⟩)

is made true at level 2. This sentence is one disjunct of F ′(σ/F)(cn/⟨3,1⟩),
which is therefore also made true at level 2. So at level 3, ⟨3,1⟩ ∈ F is made

true by E6.

In the same way, at every �nite level thereafter one more element is added to

the sequence. (To prove this, an induction argument is of course required, but

we will wait until the proof of Theorem 5.7 to do things so formally correct).

At level ω the sequence is complete.

We also need to realize that for any ordered pair which �shouldn't� be in

the sequence, the sentence expressing that it is, is actually false. We �rst

see that for any ordered pair of terms ⟨t, t′⟩ where t is not a natural term,

F ′(σ/F)(cn/⟨t, t′⟩) is made false at level 1, for it is a disjunction, the �rst two

disjuncts of which are false by Lemma 5.5 and whose third disjunct has an

existentially quanti�ed conjunct ⟨t, t′⟩ ≡ ⟨n,mn−2+mn−1⟩ which is false for any

substitution of natural numerals for n, mn−2 and mn−1. Hence ⟨t, t′⟩ ∈ F is

made false at level 2. It then follows that F ′(σ/F)(cn/⟨1, t⟩) is made false at

20That I(P ) = {F} is an assumption about the model M = (D,I) similar to the assumption
about cl on page 120.
21Remember that P (σ) ∧ F ′(cn/⟨1,0⟩) is short for ¬(¬P (σ) ∨ ¬F ′(cn/⟨1,0⟩)).
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level 2 for any term t which does not designate 0. For the two �rst disjuncts

are clearly false and the third disjunct contains the conjuncts cn−1 ∈ F , cn−1 ≡
⟨n − 1,mn−1⟩ and ⟨1, t⟩ ≡ ⟨n,mn−2 + mn−1⟩ which cannot be simultaneously

satis�ed: n would have to be replaced with 1, so cn−1 would have to be replaced

with a class synonymous with an ordered pair with 0 as �rst element and then

the �rst-mentioned conjunct would be false. A similar argument can be made

for ⟨2, t⟩, and from there on it is induction.

5.6 Real numbers

We can now go on to de�ne the class of real numbers, the order relation

thereon and the class of sequences of real numbers. We do this closely following

de�nitions 1�5 in section 2.2 of (Bishop 1967). R is de�ned to be this class:

{a∣∀n1∃!q1(⟨n1, q1⟩ ∈ a ∧ ∀n2∀q2(⟨n2, q2⟩ ∈ a→ ∣q2 − q1∣ ≤ n−12 + n−11 ))}

Subtraction is de�ned by letting a −R b be short for this class

{cn∣∃n,m,x2n, y2n(⟨m,x2n⟩ ∈ a ∧ ⟨m,y2n⟩ ∈ b ∧m ≡ 2 ⋅ n ∧ cn ≡ ⟨n,x2n − y2n⟩)}

The following Lemma says that the result of subtraction is �recognized� by the

object language to be a real.

Lemma 5.6. For all classes A and B such that A ∈ R and B ∈ R are true, the

sentence A −R B ∈ R is also true.

Proof. Follow the proof of Bishop's (1967, 17) Proposition 2 and add some

translation back and forth between object language and meta-language.

The class of positive real numbers, R+, is de�ned to be

{a∣a ∈ R ∧ ∃n, q(⟨n, q⟩ ∈ a ∧ q > n−1)},

and the class of non-negative real numbers, R0+, is

{a∣a ∈ R ∧ ∀n, q(⟨n, q⟩ ∈ a→ q ≥ −n−1)}.

The formula a <R b is short for b−R a ∈ R+, and a ≤R b is short for b−R a ∈ R0+.

Formulas where the inequality symbols are reversed or used twice are de�ned

in the obvious way. The formula a ≠R b stands for a <R b ∨ b <R a. Finally we

de�ne the class of sequences of real numbers, SR, to be

{c∣∀n∃!a(⟨n, a⟩ ∈ c) ∧ ∀a(⟨n, a⟩ ∈ c→ a ∈ R)}.
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To illustrate how these real numbers work, we will de�ne
√
2 and

√
3 and

show that the sentences
√
2 ∈ R and

√
2 <R

√
3 become true. De�ne D√2 to

be {cn∣∃σ(P (σ) ∧D′√
2
)} where D′√

2
is

cn ≡ ⟨0,1,2⟩ ∨ ∃cn−1 ∈ σ,n, xn−1, yn−1(cn−1 ≡ ⟨n − 1, xn−1, yn−1⟩
∧ ((xn−1 + 2−n)2 > 2→ cn ≡ ⟨n,xn−1, yn−1 − 2−n⟩)

∧ ((xn−1 + 2−n)2 ≤ 2→ cn ≡ ⟨n,xn−1 + 2−n, yn−1⟩))

and where P is a predicate whose interpretation is the singleton of D√2. The

real number
√
2 can then be de�ned to be this class:

{an∣∃cn ∈D√2, n, xn, yn(cn ≡ ⟨n,xn, yn⟩ ∧ an ≡ ⟨n,xn⟩)}

Analogously to the previous example, ⟨0,1,2⟩ ∈ D√2 becomes true at level 2.

At level 1, the sentence

⟨0,1,2⟩ ≡ ⟨1 − 1,1,2⟩
∧ ((1 + 2−1)2 > 2→ ⟨1,1,3/2⟩ ≡ ⟨1,1,2 − 2−1⟩)

∧ ((1 + 2−1)2 ≤ 2→ ⟨1,1,3/2⟩ ≡ ⟨1,1 + 2−1,2⟩)

is also made true (the �rst antecedent and consequent being true and the

last antecedent and consequent being false). So D′√
2
(σ/D√2)(cn/⟨1,1,3/2⟩) is

made true at level 2, so that at level 3, ⟨1,1,3/2⟩ ∈D√2 can be made true. At

level 4, ⟨2,5/4,3/2⟩ ∈ D√2 is made true, as is ⟨3,11/8,3/2⟩ ∈ D√2 at level 5.

At every �nite level thereafter one more element is added to the sequence.

For all rational numerals X0 and Y0, the sentence ⟨0,X0, Y0⟩ ∈ D√2 is made

false at level 2 whenever X0 does not designate 1 or Y0 does not designate 2

(as both the �rst disjunct and the two consequents are false while one of the

antecedents is true). It follows that at level 2, all triples with 0 as the �rst

element, except from ⟨0,1,2⟩, will make the conjunct cn−1 ≡ ⟨n − 1, xn−1, yn−1⟩
false whenever cn−1 satis�es the condition cn−1 ∈D√2, so any choice of a triple

for cn which has 1 as the �rst element but is not ⟨1,1,3/2⟩ will make one of

the two last conjuncts false. Ergo, for all rational numerals X1 and Y1, the

sentence ⟨1,X1, Y1⟩ ∈ D√2 is made false at level 3 whenever X1 is di�erent

from 1 or Y1 is di�erent from 3/2. Generalizing this reasoning, it is seen that

only one triple for each possible choice of �rst element �gets into� the sequence.

Each time a triple ⟨N,Xn, Yn⟩ makes ⟨N,Xn, Yn⟩ ∈ D√2 true at some level,

the de�ning formula of
√
2 is made true at the same level, so at the next level

⟨N,Xn⟩ ∈
√
2 is made true. Notice that as 0 is not a natural numeral and hence

not in the range of the natural variables, this does not include ⟨0,1⟩ ∈
√
2. And
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vice versa: Each time a triple ⟨N,Xn, Yn⟩ makes ⟨N,Xn, Yn⟩ ∈ D√2 false at

some level, ⟨N,Xn⟩ ∈
√
2 is made false at the next level.

So as in the example with the Fibonacci sequence, the sequence is complete at

level ω. That it becomes complete can be expressed in the object language with

the sentence
√
2 ∈ R. That this sentence is true is seen as follows. It follows

from the above that the sentence ∀n1∃!q1(⟨n1, q1⟩ ∈
√
2) is made true at level

ω+1. Let N1 and N2 be natural numerals and Q1 and Q2 be rational numerals

and assume that ⟨N1,Q1⟩ ∈
√
2 and ⟨N2,Q2⟩ ∈

√
2 are true. The di�erence

between a rational number in the sequence and the next is either 0 or 2 raised

to minus the index of the latter. Therefore, the following � where symbolism is

as an exception used in the meta-language � holds, when we assume, without

loss of generality, that I(N1) is smaller than or equal to I(N2):

∣I(Q1) − I(Q2)∣ ≤
I(N2)
∑

i=I(N1)+1
2−i = 2−I(N1) − 2−I(N2)

≤ 2−I(N1) ≤ I(N1)−1 ≤ I(N1)−1 + I(N2)−1

It follows that the object language sentence ∣Q1 − Q2∣ ≤ N−1
1 + N−1

2 is true.

Therefore, at level ω + 1,
√
2 satis�es the de�ning formula of R, so at level

ω + 2,
√
2 ∈ R becomes true.

As a last expository example we will consider the sentence
√
2 <R

√
3, where of

course
√
3 is de�ned like

√
2 (the only change that is needed is to replace �2�

with �3� on the right-hand side of the two inequalities). The formula
√
2 <R

√
3

is short for
√
3 −R

√
2 ∈ R+ which is again short for

√
3 −R

√
2 ∈ {a∣a ∈ R ∧ ∃n, q(⟨n, q⟩ ∈ a ∧ q > n−1)}.

This sentence is made true if both
√
3−R

√
2 ∈ R and ∃n, q(⟨n, q⟩ ∈

√
3−R

√
2∧

q > n−1) are true. The truth of the former follows directly from Lemma 5.6.

The latter is true if there are N and Q such that I(Q) is larger than the

reciprocal of I(N) and the sentence ⟨N,Q⟩ ∈
√
3 −R

√
2 is true. That job is

accomplished by 4 for N and 81/256 for Q. For
√
3 −R

√
2 is the set

{cn∣∃n,m,x2n, y2n(⟨m,x2n⟩ ∈
√
3∧⟨m,y2n⟩ ∈

√
2∧m ≡ 2⋅n∧cn ≡ ⟨n, y2n−x2n⟩)},

and a little calculation shows that ⟨8,187/256⟩ ∈
√
3 and ⟨8,106/256⟩ ∈

√
2 are

true, as is of course 8 ≡ 2 ⋅ 4 and ⟨4,81/256⟩ ≡ ⟨4,187/256 − 106/256⟩.

5.7 Expressive weakness

There are two points that I want to make about this theory of real numbers,

one negative and one positive. The negative, which is the subject of this short
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section, is that the theory shares the problems of expressive weakness with

Kripke's theory of truth. The positive, which will be made in the following

sections, is that with this theory we can, in spite of its shortcomings, make

sense of Cantor's diagonal proof in a way that does not commit us to higher

in�nities.

Using Russell's Class, we can design a pathological almost-real-number:

O ∶= {a∣(R ∈ R ∧ a ≡ ⟨1,0⟩) ∨ (R ∉ R ∧ a ≡ ⟨1,0⟩) ∨ ∃n > 1(a ≡ ⟨n,0⟩)}

By the third disjunct, every sentence ⟨N,0⟩ ∈ O for a natural numeral N larger

than 1 is true. In addition, every sentence of the form ⟨N,Q⟩ ∈ O, where N
is any natural numeral and Q is a rational numeral not denoting zero, is false.

However, the �rst conjunct of the �rst disjunct and the �rst conjunct of the

second disjunct are unde�ned, and as a consequence, the sentence ⟨1,0⟩ ∈ O
is unde�ned. We therefore have a class that is almost the real number 0, but

not quite, and the sentence O ∈ R is unde�ned.

This brings havoc to the theory. The trivial fact that the class of non-negative

real numbers is a subclass of the class of real numbers cannot be expressed.

That is to say that the sentence R0+ ⊆ R, that is

∀c(c ∈ R0+ → c ∈ R),

is unde�ned because of O and classes like it (O ∈ R0+ is unde�ned and O ∈ R is

unde�ned, so by Strong Kleene, O ∈ R0+ → O ∈ R is unde�ned). But intuitively

O is not a counter-example to the statement, for it is not the case that O ∈ R0+

is true while O ∈ R is not. Nor is any other class: any possible element of R0+

must also (potentially) be an element of R. So the intuitive verdict is that the
sentence is true. And it will be demonstrated that this intuitive verdict is not

in con�ict with the idea of grounding that guides Kripke.

Another example is that what we have just proved as Lemma 5.6 is not true

in its object language form, which is

∀a, b(a ∈ R ∧ b ∈ R→ a −R b ∈ R).

One instance of the doubly universally quanti�ed sentence is

O′ ∈ R ∧O′ ∈ R→ O′ −R O′ ∈ R,

where O′ is as O except that it is the membership of ⟨2,0⟩ rather than ⟨1,0⟩
that is made to be unde�ned. The class O′ −R O′ is like O in that any sen-

tence of the form ⟨N,Q⟩ ∈ O′ −R O′ has the same truth value as ⟨N,Q⟩ ∈ O.
Therefore, both the antecedent and the consequent of the mentioned instance

are unde�ned.



5. Classes and real numbers 139

Examples of this sort are ubiquitous, but these two should su�ce to give the

general idea. Almost all universal generalizations over real numbers or classes

of real numbers that we care about in analysis will come out unde�ned. The

damaging consequences of failure of bivalence are worse than in intuitionism.

The last two chapters of this dissertation are devoted to solving this problem

by arguing that more sentences are to be admitted as �grounded� than Kripke

does and developing precise theories that do that.

5.8 Bishop's diagonal proof

First a more immediate success story, though. Just as Cantor, Bishop (1967,

14) calls a set �countably in�nite� if there is a one-one correspondence between

that set and the set of integers, and just as Cantor, he then goes on to prove

that the set of real numbers is not countable. But as will be shown, we can do

the same and yet conclude that this does not mean that there are more real

numbers than there are natural numbers.

Bishop's formulation of the theorem of the uncountability of the reals and its

proof go as follows (quoted in full from page 25):

Theorem 1 Let {an} be a sequence of real numbers. Let x0 and
y0 be real numbers, x0 < y0. Then there exists a real number x
with

x0 ≤ x ≤ y0(2.22)

and

x ≠ an (n ∈ Z+)(2.23)

Proof We construct by induction sequences {xn} and {yn} of
rational numbers such that

(2.24) (i) x0 ≤ xn ≤ xm < ym ≤ yn ≤ y0 (m ≥ n ≥ 1)
(ii) xn > an or yn < an (n ≥ 1)
(iii) yn − xn < n−1 (n ≥ 1)

Assume that n ≥ 1 and that x0, . . . , xn−1, y0, . . . , yn−1 have been
constructed. Either an > xn−1 or an < yn−1. In case an > xn−1,
let xn be any rational number with xn−1 < xn < min{an, yn−1},
and let yn be any rational number with xn < yn < min{an, yn−1,
xn+n−1}. Then the relevant inequalities are satis�ed. In case an <
yn−1, let yn be any rational number withmax{an, xn−1} < yn < yn−1,
and xn any rational number with max{an, xn−1, yn−n−1} < xn < yn.
Again, the relevant inequalities are satis�ed. This completes the
induction.
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From (i) and (iii) follows that

∣xm − xn∣ = xm − xn < yn − xn < n−1 (m ≥ n)

Similarly ∣ym − yn∣ < n−1 for m ≥ n. Therefore x ≡ {xn} and y ≡
{yn} are real numbers. By (iii), they are equal.22 By (i), xn ≤ x
and yn ≥ y for all n. If an < xn then an < x, so an ≠ x. If an > yn
then an > y = x, so an ≠ x. Thus x satis�es (2.22) and (2.23).

Immediately after the proof, Bishop writes that

Theorem 1 is the famous theorem of Cantor, that the real numbers
are uncountable. The proof is essentially Cantor's �diagonal� proof.

inviting the interpretation that the theorem means exactly the same thing as

it does in Cantor's theory (Cantor 1891), namely that there are more real

numbers than there are natural numbers.23 We have to look in the chapter's

endnotes (p. 60) to �nd this hint that there is something else going on:

There is a paradox growing out of Theorem 1 which the reader
should resolve. Since every regular sequence of rational numbers
[i.e. real number] can presumably be described by a phrase in the
English language, and since the phrases in the English language can
be sequentially ordered, the regular sequences of rational numbers
can be sequentially ordered, in contradiction to Theorem 1.

The solution (in our theory; to repeat, I am not making exegetical claims) is

that there is an order of dependency between de�nitions of real numbers, and

that every de�ned sequence of real numbers facilitates, through diagonaliza-

tion, a de�nition of a new real number not in the sequence. Consider these

examples: Let ≺ be the well-ordering of the rational numbers such that x ≺ y if
x1/x2 and y1/y2 are the representations of x and y respectively as irreducible

fractions with positive denominator and either x1 + x2 is less than y1 + y2 or

x1 + x2 equals y1 + y2 and x1 is less than y1. Then de�ne, for each natural

number n, the real an to be the constant sequence having the n'th element

of ≺ as every term. Next, de�ne a to be the sequence having an as the n'th

term, and let xa,0,1 be the24 diagonalization of a between 0 and 1. And then

de�ne a′ to be the sequence whose �rst term is xa,0,1 and where an−1 is the

n'th term for all n's larger than 1. Finally, let xa′,0,1 be the diagonalization of

a′ between 0 and 1.
22This means that ∣xn − yn∣ ≤ 2n−1 for all natural numbers n (p. 15). However, actually the
equality is of no importance for the proof and is therefore ignored below.
23Bishop's proof is closer to Cantor's �rst proof in (Cantor 1874) than to the (Cantor 1891)-
proof, which is more elegant and better known today.
24About the de�nite form, see below.
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What we just did was to de�ne the reals an �rst, then the real xa,0,1, and

lastly de�ne the real xa′,0,1. A real is a rule, some rules depend on or refer to

other rules, and a real de�ned by diagonalization depends on the reals in the

diagonalized sequence. That gives us the alternative interpretation of Bishop's

Cantorian theorem: however many reals have been de�ned, another real num-

ber, depending on them, can be de�ned. The class of reals is inde�nitely

extendable, not uncountable in the classical sense.

In the next section we will verify this by modeling Bishop's theorem and proof

in our formal system. In that formal system, where we, by virtue of the classical

background theory, pretend that all the classes (qua linguistic objects) exist

�from the beginning�, the dependency takes the form that the sentence saying

that xa′,0,1 is a real number becomes true at a higher level than where the

sentence asserting that xa,0,1 is a real number becomes true, which is again at

a higher level than those where the sentences for all the an's become true.

5.9 Diagonalization

We want to make a formal de�nition of �the diagonalization of a between

x0 and y0� like we have made de�nitions of the Fibonacci sequence and
√
2.

Before that can be done, there is a technicality about Bishop's proof that we

have to consider. Strictly speaking there is a mistake in the proof. Bishop

has to show that x is a real number, which according to Bishop's de�nition

is a certain kind of sequence, and a sequence is again de�ned as a rule. But

x is not given by a rule but by an in�nity of choices (�let xn be any rational

number with [...]�). So it is only a real by Brouwer's de�nition where free

choice sequences are allowed. But the proof is easily corrected, as the choices

can be replaced with a rule. The basic idea I have used is to take the average

of the lower and the upper bound that Bishop mentions. But this has to be

quali�ed, for an may not be rational, in which case the average may not be

either. But an is itself a sequence of rationals, so one of these can be used

if only we use a element su�ciently late in the sequence: the existence of a

element qn,m in an such that qn,m −xn−1 >m−1, where m is the position in an,

is equivalent to an > xn−1 by Bishop's de�nition of the standard order relation

on the reals. Similarly, an < yn−1 is equivalent to the existence of an qn,m which

satis�es yn−1−qn,m >m−1. So letting m be the least natural number such that

qn,m satis�es either of those conditions, qn,m can play the role that an does in

Bishop's construction. If qn,m satis�es the �rst condition, we can de�ne

xn =
xn−1 +min{qn,m −m−1, yn−1}

2
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and

yn =
xn +min{qn,m −m−1, yn−1, xn + n−1}

2
.

If qn,m only satis�es the second condition, we instead de�ne

yn =
max{qn,m +m−1, xn−1} + yn−1

2

and

xn =
max{qn,m +m−1, xn−1, yn − n−1} + yn

2
.

For this to work when n = 1, x0 and y0 have to be rational. Bishop allows

them to be any real numbers. Achieving that generality would make things

signi�cantly more complicated in the present formal setting, so since it is of

no essence, we will forgo it.

We therefore make the formal de�nition as follows: the diagonalization of

A between X0 and Y0, written DA,X0,Y0 , is {cn∣∃σ(P (σ) ∧ D′A,X0,Y0
)} where

D′A,X0,Y0
is

cn ≡ ⟨0,X0, Y0⟩

∨∃cn−1 ∈ σ,n, xn−1, yn−1, xn, yn,m, an, qn,m
(cn−1 ≡ ⟨n − 1, xn−1, yn−1⟩

∧cn ≡ ⟨n,xn, yn⟩

∧⟨n, an⟩ ∈ a

∧⟨m,qn,m⟩ ∈ an
∧(qn,m − xn−1 >m−1 ∨ yn−1 − qn,m >m−1)

∧∀m′∃qn,m′((⟨m′, qn,m′⟩ ∈ an ∧ (qn,m′ − xn−1 >m′−1 ∨ yn−1 − qn,m′ >m′−1))

→m′ ≥m)

∧(qn,m − xn−1 >m−1

→ (xn ≡ xn−1+min{qn,m−m−1,yn−1}
2 ∧ yn ≡ xn+min{qn,m−m−1,yn−1,xn+n−1}

2 ))

∧(qn,m − xn−1 ≤m−1

→ (yn ≡ max{qn,m+m−1,xn−1}+yn−1
2 ∧ xn ≡ max{qn,m+m−1,xn−1,yn−n−1}+yn

2 )))

and where P is a predicate whose interpretation is the singleton of DA,X0,Y0 .

The real number XA,X0,Y0
25 is de�ned from DA,X0,Y0 just like

√
2 was de�ned

from D√2, namely as

{bn∣∃cn ∈ DA,X0,Y0 , n, xn, yn(cn ≡ ⟨n,xn, yn⟩ ∧ bn ≡ ⟨n,xn⟩)}.
25This is an exemption from the notational conventions given in Section 5.3 in two ways.
First, XA,X0,Y0 , corresponding to Bishop's �x�, is a class not a rational number. Second, the
�A� of XA,X0,Y0 is a meta-language variable for a sequence of real numbers, and �X0� and
�Y0� are rational numerals. The same holds for the subscripts of �DA,X0,Y0 � and �D′A,X0,Y0

�.
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The following theorem is the formal analogue of Bishop's diagonalization the-

orem. One �nal de�nition is needed to formulate it, namely a de�nition that

�translates� a rational number into the real number that is �equal� to it: for a

given rational numeral Q de�ne QR to be the real number {c∣∃n(c ≡ ⟨n,Q⟩)}.
The basic idea of the proof of the theorem is the same as in Bishop's proof,

but the fact that it is about a formal language adds a signi�cant amount of

complexity, as do the corrections that were needed to make XA,X0,Y0 into a

proper rule.

Theorem 5.7. For all classes A and rational numerals X0 and Y0 such that

A ∈ SR and X0 < Y0 are true sentences, also the sentences XA,X0,Y0 ∈ R,
XR

0 ≤R XA,X0,Y0 ≤R Y R
0 and ∀n, an(⟨n, an⟩ ∈ A→XA,X0,Y0 ≠R an) are true.

Proof. This proof is divided into four parts. In parts 2, 3 and 4, the three

parts of the consequent of the Theorem are deduced. But �rst, in part

1. it is shown by induction that for each non-negative integer n, there are

unique rational numerals Xn and Yn such that ⟨N,Xn, Yn⟩ ∈ DA,X0,Y0 , where

N is the rational numeral such that I(N) is n, is true and that for these

constants the following holds:26

(a) I(Xn) is smaller than I(Yn).

(b) I(Xn) is larger than I(Xm) for all natural numbers m smaller than n.

(c) I(Yn) is smaller than I(Ym) for all natural numbers m smaller than n.

(d) When n is positive, I(Yn) minus I(Xn) is smaller than the reciprocal of

I(N).

Base case: Existence is trivial, as the sentence

D′A,X0,Y0(σ/DA,X0,Y0)(cn/⟨0,X0, Y0⟩)

is made true at level 1 and the sentence ⟨0,X0, Y0⟩ ∈ DA,X0,Y0 therefore at

level 2.

That (a) holds follows directly from the Theorem's assumptions. Both (b), (c)

and (d) are vacuously satis�ed.

Uniqueness is seen as follows: For all rational numerals X−1 and Y−1, the

sentence ⟨−1,X−1, Y−1⟩ ∈ DA,X0,Y0 is made false at level 2, as

D′A,X0,Y0(σ/DA,X0,Y0)(cn/⟨−1,X−1, Y−1⟩)
26(a), (b) and (c) correspond to (i) in Bishop's proof and (d) correspond to (iii). Statement
(ii) is left out and instead blended into part 4.
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is made false at level 1. It follows that ⟨0,X ′
0, Y

′
0 ⟩ ∈ DA,X0,Y0 , where alsoX

′
0 and

Y ′
0 are rational constants, is made false at level 3 when either X ′

0 is di�erent

from X0 or Y ′
0 is di�erent from Y0.

Induction step: Let a positive integer n be given, and let N be the natural

numeral such that I(N) is n. By the induction hypothesis, there are unique

rational numerals Xn−1 and Yn−1 such that ⟨N − 1,Xn−1, Yn−1⟩ ∈ DA,X0,Y0 is

true. For these numerals it also holds that I(Xn−1) is smaller than I(Yn−1).
From the assumption that A ∈ SR is true, it follows that there is a unique

class An such that ⟨N,An⟩ ∈ A is true.27 It also follows that An ∈ R is true,

from which it can be inferred that ∀n1∃!q1(⟨n1, q1⟩ ∈ An is true. Therefore,

for each natural numeralM there is a unique rational numeral Qn,m such that

⟨M,Qn,m⟩ ∈ An is true. As I(Xn−1) is smaller than I(Yn−1), there is some such

M and corresponding Qn,m such that I(Qn,m) minus I(Xn−1) is larger than

the reciprocal of I(M) or I(Yn−1) minus I(Qn,m) is larger than the reciprocal

of I(M). Let henceforthM designate the rational numeral which satis�es this

requirement and for which I(M) is smallest, and let Qn,m designate the unique

rational numeral such that ⟨M,Qn,m⟩ ∈ An is true.

Assume �rst that I(Qn,m) minus I(Xn−1) is larger than the reciprocal of

I(M). In that case de�ne Xn to be the rational numeral such that I(Xn) is

the average of I(Xn−1) and the minimum of I(Qn,m −M−1) and I(Yn−1), and
Yn to be the rational numeral such that I(Yn) is the average of I(Xn) and the

minimum of I(Qn,m −M−1), I(Yn−1) and I(Xn +N−1). Then this sentence

is true:

⟨N − 1,Xn−1, Yn−1⟩ ≡ ⟨N − 1,Xn−1, Yn−1⟩

∧⟨N,Xn, Yn⟩ ≡ ⟨N,Xn, Yn⟩

∧⟨N,An⟩ ∈ A

∧⟨M,Qn,m⟩ ∈ An

∧(Qn,m −Xn−1 >M−1 ∨ Yn−1 −Qn,m >M−1)

∧∀m′∃qn,m′((⟨m′, qn,m′⟩ ∈ An ∧ (qn,m′ −Xn−1 >m′−1 ∨ Yn−1 − qn,m′ >m′−1))

→m′ ≥M)

∧(Qn,m −Xn−1 >M−1

→ (Xn ≡ Xn−1+min{Qn,m−M−1,Yn−1}
2

27In the Fibonacci and square root examples, an ordered pair/triple came into the sequence
immediately after the previous ordered pair/triple was included. In this case the nth triple
has to wait for two things before it can enter into the sequence, namely that triple number
n−1 is included and that this sentence, ⟨N,An⟩ ∈ A, is made true, i.e. that the nth real which
is to be used in the diagonalization is created and included in the diagonalized sequence.
Ergo, the temporal order is as described in Section 5.8.
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∧Yn ≡ Xn+min{Qn,m−M−1,Yn−1,Xn+N−1}
2 ))

∧(Qn,m −Xn−1 ≤M−1

→ (Yn ≡ max{Qn,m+M−1,Xn−1}+Yn−1
2

∧Xn ≡ max{Qn,m+M−1,Xn−1,Yn−N−1}+Yn
2 )))

So it follows that

D′A,X0,Y0(σ/DA,X0,Y0)(cn/⟨N,Xn, Yn⟩)

is true. Hence ⟨N,Xn, Yn⟩ ∈ DA,X0,Y0 is true as well.

We need to show that (a) holds for the de�ned numerals, and since I(Yn)
is the average of I(Xn) and the minimum of I(Qn,m −M−1), I(Yn−1) and

I(Xn + N−1), this amounts to showing that I(Xn) is smaller than each of

those. It follows from the assumption we are working under right now, that

I(Xn−1) is smaller than I(Qn,m −M−1), and the induction hypothesis tells us

that I(Xn−1) is smaller than I(Yn−1). As I(Xn) is the average of I(Xn−1) and
the minimum of I(Qn,m −M−1) and I(Yn−1), it follows that I(Xn) is indeed

smaller than both I(Qn,m−M−1) and I(Yn−1). And as I(N) is positive, I(Xn)
is smaller than I(Xn +N−1).

From this it is also seen that I(Xn) is larger than I(Xn−1) and then (b)

follows from (b) of the induction hypothesis. Likewise with (c). As I(Yn) is

the average of I(Xn) and something which is larger than this but smaller than

or equal to I(Xn +N−1), also (d) holds.

Now assume instead the opposite, namely that I(Qn,m) minus I(Xn−1) is

smaller than or equal to the reciprocal of I(M). In that case de�ne Yn to

be the rational numeral such that I(Yn) is the average of I(Yn−1) and the

maximum of I(Qn,m +M−1) and I(Xn−1), and Xn to be the rational numeral

such that I(Xn) is the average of I(Yn) and the maximum of I(Qn,m +M−1),
I(Xn−1) and I(Yn −N−1). From the assumption and the de�nition of M it

follows that I(Yn−1) minus I(Qn,m) is larger than the reciprocal of I(M). So
the deduction under this assumption goes through analogously.

Now for the uniqueness part. It has to be demonstrated that for ⟨N,X ′
n, Y

′
n⟩ ∈

DA,X0,Y0 to be true, X
′
n has to be Xn and Y ′

n has to be Yn. As I(N) is positive,
⟨N,X ′

n, Y
′
n⟩ ≡ ⟨0,X0, Y0⟩ is false, whatever rational numerals X ′

n and Y ′
n are.

Therefore, all of these conjuncts have to be satis�ed by suitable numerals in

place of xn−1, yn−1, m and qn,m and suitable classes in place of cn−1 and an:

1. cn−1 ∈ DA,X0,Y0

2. cn−1 ≡ ⟨N − 1, xn−1, yn−1⟩
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3. ⟨N,an⟩ ∈ A

4. ⟨m,qn,m⟩ ∈ an ∧ (qn,m − xn−1 >m−1 ∨ yn−1 − qn,m >m−1)
∧ ∀m′∃qn,m′((⟨m′, qn,m′⟩ ∈ an
∧ (qn,m′ − xn−1 >m′−1 ∨ yn−1 − qn,m′ >m′−1)) →m′ ≥m)

5. qn,m − xn−1 >m−1

→ (xn ≡ xn−1+min{qn,m−m−1,yn−1}
2 ∧ yn ≡ xn+min{qn,m−m−1,yn−1,xn+n−1}

2 )

6. qn,m − xn−1 ≤m−1

→ (yn ≡ max{qn,m+m−1,xn−1}+yn−1
2 ∧ xn ≡ max{qn,m+m−1,xn−1,yn−n−1}+yn

2 )

By the induction hypothesis, there is only one choice of numerals to substitute

for xn−1 and yn−1, if cn−1 is to be replaced with a class that can make both 1.

and 2. true, and it has already been argued that the there is only one option

for a class to take the place of an in 3. For a substitution for m to satisfy 4., it

has to be minimal among those that satisfy a certain condition, so at most one

natural numeral can. And then the uniqueness of a substitute for qn,m follows

from the �rst conjunct of 4. together with 3. which implies that an ∈ R is true.

With the unique numerals to take the places of qn,m, xn−1 and m, one of the

antecedents of 5. and 6. is true and one is false. The conditional with the false

antecedent is true, so there is only the consequent of the other conditional left

to satisfy. Whether it is the antecedent of 5. or of 6., the right-hand side of

the left conjunct is now �determined�, so there is only one possible choice of

a constant to substitute for the left-hand side. Consequently, the same holds

for the right conjunct, so Xn and Yn are uniquely determined. This completes

the induction.

2. From the induction and the de�nition of XA,X0,Y0 , it is easily seen that

for each natural number, there is a unique rational numeral Xn such that

⟨N,Xn⟩ ∈ XA,X0,Y0 is true, where, as usual, N is the natural numeral such

that I(N) is that natural number (and there must be some level at which

they are all true). Ergo, ∀n1∃!q1(⟨n1, q1⟩ ∈ XA,X0,Y0 is true. Furthermore, for

any natural numbers n and m, where we without loss of generality assume

that m is larger than or equal to n, the absolute value of I(Xm) minus I(Xn)
is equal to I(Xm) minus I(Xn) (by (b)), which is smaller than I(Yn) minus

I(Xn) (by (a) and (c)), which is again smaller than the reciprocal of I(N) (by
(d)), which is �nally smaller than the reciprocal of I(N) plus the reciprocal of
I(M). Ergo the sentence ∣Xm −Xn∣ < N−1 +M−1 is true. Therefore,

∀n1∃!q1(⟨n1, q1⟩ ∈XA,X0,Y0

∧ ∀n2∀q2(⟨n2, q2⟩ ∈XA,X0,Y0 → ∣q2 − q1∣ ≤ n−12 + n−11 ))

is true and it follows that XA,X0,Y0 ∈ R is as well.
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3. The sentence XR
0 ≤R XA,X0,Y0 is XA,X0,Y0 −R XR

0 ∈ R0+. To show that it is

true, the truth of two other sentences have to be demonstrated. The �rst is

XA,X0,Y0 −R XR
0 ∈ R, but this follows directly from Lemma 5.6 together with

the (trivial) fact that XR
0 ∈ R is true and the demonstration in part 2 that

XA,X0,Y0 ∈ R is as well. The second is

∀n, q(⟨n, q⟩ ∈XA,X0,Y0 −RXR
0 → q ≥ −n−1).

Since bothXR
0 ∈ R andXA,X0,Y0 ∈ R are true, all sentences of the form ⟨M,Q⟩ ∈

XA,X0,Y0−RXR
0 are true or false, so there are no unde�ned antecedents to worry

about. Assume that it is true. Let X2m be the rational numeral and L the

natural numeral such that the sentences L ≡ 2 ⋅M and ⟨L,X2m⟩ ∈XA,X0,Y0 are

true. As XA,X0,Y0 −RXR
0 is the class

{cm∣∃m, l, x2m, x0(⟨l, x2m⟩ ∈XA,X0,Y0

∧ ⟨l, x0⟩ ∈XR
0 ∧ l ≡ 2 ⋅m ∧ cm ≡ ⟨m,x2m − x0⟩)},

I(Q) is identical to I(X2m − X0). It follows from (b) that I(X2m − X0) is

positive and hence Q ≥ −M−1 is true. From this, the desired conclusion follows.

The truth of XA,X0,Y0 ≤R Y R
0 is of course proved analogously. With this, the

present part of the proof can be concluded: the sentenceXR
0 ≤R XA,X0,Y0 ≤R Y R

0

is true.

4. Let N be a natural numeral and An be a class. It follows from the assump-

tion that A ∈ SR is true, that ⟨N,An⟩ ∈ A is either true or false, so again there

are no possible unde�ned antecedents to worry about when trying to prove

a conditional; we just need to deduce the truth of XA,X0,Y0 ≠R An from the

assumption of the truth of ⟨N,An⟩ ∈ A to be able to conclude that

∀n, an(⟨n, an⟩ ∈ A→XA,X0,Y0 ≠R an)

is true.

With the numerals meaning what they did in part 1, we have either Qn,m −
Xn−1 >M−1 true or Yn−1 −Qn,m >M−1 true. Assume the former (the proof is

analogous in the latter case). I(Xn) is smaller than I(Qn,m −M−1) and hence

I(Yn), being the average of I(Xn) and the minimum of a set which includes

I(Qn,m −M−1), is as well. Therefore, I(Qn,m−M
−1−Yn

2 ) is positive, and we can

let L be a natural numeral which satis�es the conditions that I(L−1) is smaller

than this fraction and I(2 ⋅L) is larger than or equal to I(M).

Let Qn,2l and X2l be the rational numerals such that ⟨2 ⋅ L,Qn,2l⟩ ∈ An and

⟨2 ⋅L,X2l⟩ ∈XA,X0,Y0 are true. As An ∈ R is true, the di�erence between Qn,2l
and Qn,m is at most I(M−1 + (2 ⋅ L)−1). And from (a), (b) and (c) we know
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that I(X2l) is smaller than I(Yn). Therefore, I(Qn,2l) minus I(X2l) is larger
than I(Qn,m) minus I(M−1) minus I((2 ⋅ L)−1) minus I(Yn) which is again

larger than I((2 ⋅L)−1). Ergo the sentence Qn,2l−X2l > (2 ⋅L)−1 is true. Hence
∃n, q(⟨n, q⟩ ∈XA,X0,Y0 −An ∧ q > n−1) is true. From Lemma 5.6 it follows that

also XA,X0,Y0 −An ∈ R is true, so XA,X0,Y0 −An ∈ R+ and hence XA,X0,Y0 >R An
and therefore XA,X0,Y0 ≠ An are as well.

The content of the Theorem is that the class of real numbers is uncountable

in Bishop's sense of that word. He has de�ned it in the same way as Cantor,

namely as the absence of a one-one correspondence with the natural numbers.

But for Bishop, and for us, a one-one correspondence is, like any other func-

tion, a rule. So what the Theorem really says is just that it is impossible to

describe a sequence that contains all the reals and only reals.28 Any sequence

that purports to do so will through diagonalization give rise to a new real

number which is not included in that sequence. So the class of real numbers is

inde�nitely extensible. At no point in time can all the reals have been de�ned.

That is what can be seen from the object language. But the object language is

described in a classical meta-language, and that fact a�ords us an alternative

point of view. For it is easy to see that the set of classes S such that S ∈ R is a

true sentence, is classically countable. This follows simply from the fact that

the vocabulary of the language is countable, which implies that there are only

countably many �nite combinations of the elements of that vocabulary, and

the classes constitute a subset of the set of those combinations. The di�erence

between Cantor's and Bishop's concepts of uncountability is made apparent

by the fact that Bishop's reals are deemed uncountable by the object language

but countable by the meta-language. The class of real numbers is inde�nitely

extensible but forever countable.

We should try to get a little more clear on what it means that the reals are

�inde�nitely extensible�, as that phrase has been de�ned in di�erent ways and

there is disagreement about what kind of phenomenon it refers to. Russell's

(1907, 36) de�nition of what he calls �self-reproductive� is often taken to be

equivalent to Dummett's (1993, 441) de�nition of �inde�nitely extensible�, so

it interesting that we here have something that satis�es the latter de�nition

but does not satisfy (the precise wording of) the former. This is what Russell

writes:

[T]here are what we may call self-reproductive processes and
classes. That is, there are some properties such that, given any

28Describing a sequence that contains all the reals is no problem: take a sequence that
contains all the classes.



5. Classes and real numbers 149

class of terms all having such a property, we can always de�ne a
new term also having the property in question. (Original emphasis)

Given R we can not de�ne a new term also having the property of being a real

number, for the class R does not in itself give us a sequence of reals to which

diagonalization can be applied. To get a de�nition that captures what we are

dealing with here, we need to add the crucial word �de�nite�, as Dummett

does:

An inde�nitely extensible concept is one such that, if we can form
a de�nite conception of a totality all of whose members fall under
that concept, we can, by reference to that totality, characterize a
larger totality all of whose members fall under it.

Much confusion has surrounded Dummett's use of the word �de�nite�, for in

this context it is not clear that its meaning is de�nite. We, however, are in a

position to make it precise, namely as meaning �can be ordered in a sequence�.

Thus understood, the reals are inde�nitely extensible: if a collection, all of

whose members fall under the concept of real number, can be ordered in a

sequence, we can by reference to that totality characterize a larger collection

� the reals of the sequence plus its diagonalization � all of whose members fall

under the concept of real number.29

It is interesting that the inde�nitely extensible concept of real numbers can

be �collected� in an intensional class which is a sub-class of a class character-

ized by a concept that is not inde�nitely extensible, namely a universal class

characterized by a tautologous concept.

5.10 Comparison with Skolem's paradox

That the diagonalization theorem can go through in a setting where there is

not, seen from an �external point of view�, uncountably many reals, is not

in itself something new. That is also the point of Skolem's paradox30, so a

comparison between this and the result above is in order.

The so-called paradox consists in the fact that countable �rst-order axiom-

atizations of classical set theory have non-standard models in which the set

29Under this de�nition, the natural numbers are not inde�nitely extensible, for they can be
ordered in a sequence. However, a more liberal � but in my opinion still reasonable � notion
of inde�nite extensibility can be added according to which they are, namely be using the
stricter interpretation of �de�nite collection� as meaning �all elements of the collection have
been constructed�. Then the natural numbers are inde�nitely extensible with the �diagonal-
izer� being the operation of taking the maximal element of the collection and applying the
successor function to it.
30The primary source is (Skolem 1922). See also (Benacerraf and Wright 1985).
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of real numbers is countable, even though the formal sentence which says (or

would normally be interpreted to say) that it is uncountable, is true in those

models. That is possible because the formal sentence can be true merely due

to the absence of a witness to countability. The formal sentence asserts the

non-existence of a one-one correspondence between the natural numbers and

the reals. Such a correspondence is itself a set, and this set � the witness to

the countability � is what is absent from the models in question.

The theorem that the reals are uncountable is of course provable in classi-

cal set theory, so Skolem's paradox shows, just as well as the present result,

that diagonalization does not on its own su�ce to demonstrate that there are

more reals than natural numbers. But there is an important di�erence. In the

classical case it seems like nothing more than an anomaly; an indication that

�rst-order axiomatizations are imperfect.31 In that context it cannot be re-

garded as a reasonable aspect of the theory, for classical set theory is a theory

about timeless sets � the theory about all the timeless sets that could exist.

So if there is an external perspective from which it can be seen that there

could be a one-one correspondence between the reals of the model and the

natural numbers, then this correspondence ought to be in the model. Hence,

if it is not, it is deemed a �non-standard� model. (I do not want to overstate

this point though. I am not claiming that we here have another argument

against classical mathematics on top of those made in Chapter 1, for the clas-

sical mathematician can avoid the problem by using second-order logic, or by

denying that she is restricted in her expressive power to what is invariant in

all models of some set of axioms.)

In our theory on the other hand, the result is just natural, for here the objects

are de�ned in time in a never-ending process, so the fact that there is not at

any point a completed correspondence between the natural numbers and the

reals is well motivated by the background philosophy.

31That is the central point of (Shapiro 1991).



Chapter 6

Compositional supervaluation

We will now attend to the expressibility problem of too many sentences coming

out unde�ned. It should be clear that the problem is virtually the same in

Kripke's truth theory (see the end of Section 5.2) and our theory of classes

(see Section 5.7). It does therefore not seem overly optimistic to hope that if

we study the problem in the former case, we will afterwards be able to transfer

insights and solutions to the latter case. As there is an extensive literature

on theories of truth that can be drawn on and used as inspiration, and hardly

any literature on classes relevant to the one presented here, this seems like a

good methodology. In the present chapter we will therefore focus on what I

call �Gupta's Challenge�, which does not in itself have a direct bearing on the

problems for class theory explained in Section 5.7, but nevertheless turns out

to provide inspiration that will eventually lead us to a solution to the class

theoretical problems.

This chapter is therefore about a modi�cation of Kripke's theory. It is not the

modi�cation that I am ultimately going to endorse; it is only an intermediate

step. It is a strengthening of the basic version of Kripke's theory in the sense

that every sentence that is true (false) in the basic version is true (false) in

the modi�cation and more sentences are made true and false. However, not

quite enough sentences are made true or false, I will argue in the end of this

chapter. My dialectical strategy is to �rst convince you, the reader, that such

a strengthening is necessary to capture everything that should be recognized

as true or false, and then persuade you that the theory of this chapter is

unstable in the sense that if those extra truths and falsities are accepted,

even more truths and falsities have to be. I believe that we should accept a

non-compositional theory, which will be described in Chapter 7. That is a

controversial claim, and that is why I feel the need to �rst demonstrate the

shortcomings of a compositional approach.

151
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We will continue to put brackets around certain issues, namely TIC and TAP,

the use of trans�nite ordinals and the reliance on classical set theory on the

meta-level, and return to these issues in Chapter 7.

6.1 Gupta's Challenge

The modi�cation to be presented in this chapter is inspired by the following

scenario, which Gupta (1982) presented in order to criticize Kripke's theory:

assume that the sentences

A1: Two plus two is three

A2: Snow is always black

A3: Everything B says is true

A4: Ten is a prime number

A5: Something B says is not true

are all that is said by a person �A�, and the sentences

B1: One plus one is two

B2: My name is B

B3: Snow is sometimes white

B4: At most one thing A says is true

are all that is said by a person �B�. The sentences A1, A2, and A4 are clearly

false and B1, B2, and B3 are clearly true. So it seems unobjectionable to

reason as follows: A3 and A5 contradict each other, so at most one of them

can be true. Hence at most one thing A says is true. But that is what B says

with his last sentence, so everything B says is true. This is again what A says

with A3 and rejects with A5, so A3 is true and A5 false.

But counterintuitively the basic version of Kripke's theory tells us that A3,

A5, and B4 are all unde�ned. The reason is that the evaluation of A3 and

A5 awaits the determination of B4, which in turn cannot receive a truth value

before A3 or A5 do.

One way to obtain the intuitively correct truth values is to swear allegiance

to one of the theories that assign truth values in a holistic manner.1 But that

should not be necessary; the truth of B4 and A3 and the falsity of A5 are

intuitively grounded. The truth of B4 is intuitively grounded merely in the

facts that A1, A2, and A4 are false and that A3 and A5 are contradictory. No

1See for example (Walicki 2009), according to which truth values are not assigned in a
stage-by-stage process as in Kripke's and Gupta's theories, but �simultaneously�. A rough
formulation of the theory is that any assignment of truth values that satis�es certain com-
positional demands and minimizes the number of sentences to be declared unde�ned is
acceptable. See also (Wen 2001).
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speci�c assignment of truth values to A3 and A5 is presupposed. However,

when B4 has been assigned the value of truth, the truth of A3 and the falsity

of A5 are subsequently grounded in the truth of B1�B4.

Slightly more precisely: The fact A3 is true is grounded in the fact B4 is true

plus some other facts. The fact A5 is false is grounded in the same facts. The

fact B4 is true is in turn grounded in the fact A3 and A5 are contradictory plus

some other facts. This last fact can be grounded in facts about the meaning of

A3 and A5 alone. Hence the grounding relation does not violate the conditions

of irre�exivity and asymmetry that must clearly hold for such a relation.

Or in yet other terms: it should be possible to �rst establish the fact that A3

and A5 are contradictory, then make B4 true, and after that make A3 true

and A5 false.

All nine sentences can intuitively be assigned proper truth values (true or

false; the value of �unde�ned� will henceforth be called a truth value but not

a proper truth value) via a bottom-up process. Therefore, these sentences

constitute a challenge to any theory which purports to be about grounded

truth, such as Kripke's. Let us call it �Gupta's Challenge�. Kripke (1975,

706) de�nes �grounded�, as a predicate applicable to sentences, as meaning

that the sentence has a proper truth value in the minimal �xed point. One

thing that Gupta's Challenge teaches us is that the minimal �xed point of the

strong Kleene valuation schema does not fully capture the informal notion of

groundedness.

Note also that the intuitive reasoning for the truth values of the nine sentences

does not employ any �dangerous� principles, i.e. principles that could lead to

inconsistency if used in other situations. The only principle used here that

goes beyond what is validated by the basic version of Kripke's theory is the

inference rule, from the inconsistency of two sentences, conclude that at most

one of them is true, which is perfectly benign. Hence, there does not seem to

be any good excuse for a theory that delivers another result.

For the purposes of this chapter I will take two of the success criteria for a

theory of truth to be that it only delivers truths and falsities that are intuitively

grounded (this will be referred to as �groundedness-acceptable�) and that it can

handle Gupta's Challenge adequately. A third success criterion for a theory

of truth, to be introduced in Section 6.3 and there argued to be prima facie

reasonable, is that it is compositional (i.e. that the connectives and quanti�ers

are truth-functional). With respect to the �rst of these success criteria, the

basic version of Kripke's theory is on the right track. But Gupta's Challenge

shows that it does not go far enough.
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In the next section I elaborate on the subject of grounding, concluding that

some kind of supervaluation is compatible with the demand for grounding.

In Sections 6.3 and 6.4 it is argued that Kripke's form of supervaluation and

revision theory-style supervaluation are not. From Section 6.5 onwards, an

alternative form of supervaluation is presented.

6.2 Grounding

The notion of grounding is more vague than the concepts of TIC and TAP,

but it will have to do for now. Trying to be completely philosophically pre-

cise about a formal theory that will ultimately be discarded is not worth the

trouble. As already stated, we will aim for more precision in Chapter 7.

A simpli�ed explanation of what grounding should consists of in a hierarchical

theory like Kripke's is the following: We begin with a basis consisting of non-

semantical facts. Then we make all those sentences that correspond to those

facts true. Now there are a number of semantical facts in addition to the non-

semantical facts, namely, facts about which sentences are true. Then we make

all those sentences that can be grounded in the enlarged set of facts true. And

so on.

This idea can already be found in Tarski's theory of truth.2 With his basic

theory, Kripke contributed two things. First, he showed how to put the di�er-

ent levels of this iteration into one language (although by his own admission

(1975, 714) the success here is only partial). Second, he showed how to capture

formally the intuitive verdict that the idea of grounding provides in the case

of the Watergate example and structurally similar cases.

The reason why the explanation two paragraphs back is a simpli�cation is

that the basis is not completely devoid of semantic facts. For instance, facts

concerning what sentences are about are semantic facts, and they have to be

included in the basis, if the truth values of the Watergate sentences are to

come out right (see the de�nitions of the predicates N and J in Section 5.2).

The only semantic facts that cannot be in the basis are those that are de�ned

by the iteration. All facts available at a given level can be used for grounding.

This brings us back to Gupta's Challenge. That there are two sentences that

cannot both be true is a semantic fact that is not de�ned by the iteration,

but is available from the outset.3 Hence, when A1, A2 and A4 are made false,

2See (Tarski 1933) and (Tarski 1944).
3Or rather: may be. It is a fact from the outset that φ and ¬φ cannot both be true. If ψ
becomes false at, say, level 7, then at level 7 it also becomes a fact that ψ∨φ and ¬φ cannot
both be true.
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the fact of those falsities joins an already existing fact about A3 and A5 being

inconsistent. The necessary facts are then in place to make B4 true. That

is what the basic version of Kripke's theory misses: Gupta's Challenge and

structurally similar cases.

The formal iteration of Kripke's basic theory only makes use of 1) non-semantic

facts, 2) the semantic facts that can be encoded in the interpretation function

which provides the semantics of the constants and the ordinary predicates of

the language, and 3) semantic facts consisting of the actual assignment of

truth values that have been made at previous levels. One thing is left out with

respect to the intuitive iteration he is trying to formalize: facts about which

combinations of truth values are possible (given the other information).

This calls for a form of supervaluation: if a particular sentence is true relative

to all possible assignments of truth values (given all other facts available at

a given level), then that is a fact in which the truth of that sentence can be

grounded. Hence, the attempt that Kripke makes to formulate a superval-

uation version of his theory is well motivated. Unfortunately, that attempt

goes too far to be groundedness-acceptable: in some cases it declares that a

sentence is true given all possible assignments of truth values, when in fact it

is not. That is one of the issues to be discussed in the next section.

For a hierarchical truth theory to be groundedness-acceptable it has to be

the case that every time a sentence is made true or false at a level, there is an

already established (negative) fact for it to be grounded in. There may be facts

about which combinations of truth values are possible and which are impossible

that are established prior to the sentences in question getting speci�c truth

values, and making sentences true grounded in such a fact is acceptable � but

of course only if it is a genuine fact! If the class of possibilities considered is too

narrow, we get �false positive� verdicts about impossibilities of combinations,

and using such verdicts will make a theory unacceptable.4

4An alternative way to characterize the de�ciency in Kripke's method, suitable for the clas-
sical mathematician, is to consider the following framework for arriving at an interpretation
of the truth predicate by iteration. Instead of adding true and false sentences at each level,
we remove possible combinations of truth values. So where Kripke's levels each consists of
an ordered pair of true and false sentences, the alternative is to have each level consist of a
set of functions from the set of sentences to the set of the three truth values, representing
those combinations that are not (yet) ruled out. Thus, the �rst level consists of the set
of all such functions, and at each level functions are removed, based on the information
encoded in the previous set of functions. Kripke's theory could be reformulated in this more
general framework. But it would be with a jump rule that was only sensitive to information
consisting in it being the case for some sentences that all remaining functions assign the
sentence the value true or that all remaining functions assign the sentence the value false.
That way, Kripke's method is quite simplistic, only utilizing a fraction of the information
that a more sophisticated jump rule might make available. (I have not developed this idea
further, partly because I don't see how to make it constructivistically acceptable.)
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6.3 Kripke's supervaluation

In this section I discuss Kripke's supervaluation versions of his theory and in

the next, Gupta's own revision theory of truth, in order to make the case that

these theories are not successful in the stipulated senses of being groundedness-

acceptable, handling Gupta's Challenge adequately and resulting in a compo-

sitional semantics.

The simplest version of supervaluation considered by Kripke is the one in which

sentences are supervaluated as true (false) if they are evaluated as classically

true (false) relative to all total extensions of the evaluations at a given level.

More precisely: For each classical interpretation of the truth predicate (i.e. a

subset of the domain) E , let TE be the set of classically true sentences relative

to E (and a model), and let FE be S ∖ TE , the set of classically false sentences

relative to E (and that model). This simple supervaluation jump takes a partial

interpretation (T,F ) of the truth predicate to another partial interpretation

(ST,SF ) where ST (SF ) is the set of sentences φ such that for all E , if
T ⊆ E ⊆ S ∖ F then φ ∈ TE (φ ∈ FE).5

This version has no e�ect upon the sentences of Gupta's example compared to

the basic version. The reason is that at every level there is, among the total

evaluations quanti�ed over when making the supervaluation, an evaluation in

which both A3 and A5 are true, so B4 does not become true.

This problem can be remedied by tweaking the theory a bit. Instead of quanti-

fying over all total extensions of the given evaluation, we can restrict attention

to the maximally consistent ones: add the proposition that E is maximally

consistent as a conjunct to the antecedent of the condition for φ above. Since

there is no maximally consistent total evaluation in which both A3 and A5 are

true, B4 becomes true at level 2 in this version of the theory; and then at the

next level, A3 is made true and A5 false.

This does not really solve the problem, however. After the theory has been

tweaked, Gupta can (and does) tweak his example to make the problem reap-

pear by replacing A3 and A5 with A3* and A5*:

A3*: �Everything B says is true� is true

A5*: �Something B says is not true� is true

These sentences are not contradictory in the proper technical sense, only in-

tuitively, so again B4 does not become true.

Taking a step back from the issue of which sentences are given which truth

values, there is a more fundamental reason for rejecting the supervaluation

5See (Kripke 1975, 711).
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versions of Kripke's theory. As argued above, the basic version of the theory is

groundedness-acceptable: a sentence is declared true when the state of a�airs

expressed by the sentence can be grounded as true in the model or a lower level.

This is not the case in the supervaluation versions, which declare a sentence

true when the state of a�airs expressed by the sentence is the case according

to a class of �ctions. Let me explain.

In the previous section it was concluded that if a sentence is true relative to

all possible assignments of truth values (given all other facts available at a

given level), then that is a fact in which the truth of that sentence can be

grounded. However, Kripke's form of supervaluation does not check that the

sentence is true relative to all possible assignments of truth values before the

sentence is made true. For the �nal evaluation (the �xed point) must surely

be considered a possible evaluation � what is actual is possible. And the �nal

evaluation is, in the supervaluation versions just as in the original, non-total

(in the presence of vicious self-reference). So the total evaluations quanti�ed

over in the supervaluation are not all the possible assignments, for they do

not include the evaluation that ends up being the actual evaluation. The total

evaluations are, rather, expressions of the �ction that we are in a bivalent

setting when in fact we know that we are in a trivalent one. Therefore it is

not su�cient to consider what is true in these; doing so gives �false positive�

verdicts on matters of which combinations of truth values are possible. Ergo,

Kripke's supervaluation theories are not groundedness-acceptable.

A concrete symptom of this philosophical problem is that Kripke's method

for supervaluation declares all classically valid sentences true. This is very

misleading in a semantics that is strictly weaker than classical semantics. A

prominent example is that the disjunction of the Liar and its negation is true

even though neither of the disjuncts is made true. When taking the step

from bivalent to trivalent semantics, it seems clear that the property from the

information that a disjunction is true, it is possible to conclude that at least

one of the disjuncts is as well, is more important to preserve than the property

every disjunction of a sentence with its negation is true. The latter can hardly

be considered a desideratum at all (given that there are sentences φ such that

neither φ nor ¬φ is true); it rather seems like dishonesty. This is why it seems

reasonable to demand of a truth theory that it is compositional.

The restriction to maximally consistent evaluations does not prevent the dis-

junction of the Liar and its negation from being made true. Neither does any

other restriction, for quantifying over fewer evaluations can only make more

sentences true or false. In short, every version of Kripke-style supervaluation

results in a non-compositional semantics.
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Kripke's basic theory does not go far enough to capture all that is intuitively

grounded, while his supervaluation versions go too far. There is a middle

ground to be seized, one in which supervaluation is employed, but over trivalent

evaluations.

6.4 Revision theory

We obtain the intuitively correct truth values for A1�A5 and B1�B4 if we

accept a revision theory of truth. One version of such a theory6 is that there are

a number of best candidates for the extension of truth, namely the extensions

that appear again and again when the revision process has settled into a loop.

De�ne Tα(E) by recursion on the ordinal α as follows:

Tα(E) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

E if α = 0

TTα−1(E) if α is a successor ordinal

Xα ∪ ((S ∖ Y α) ∩ E) if α is a limit ordinal ≠ 0

where

Xα =
⎧⎪⎪⎨⎪⎪⎩
φ

RRRRRRRRRRR
∃β < α

⎛
⎝
φ ∈ ⋂

β≤γ<α
T γ(E)

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
and

Y α =
⎧⎪⎪⎨⎪⎪⎩
φ

RRRRRRRRRRR
∃β < α

⎛
⎝
φ ∉ ⋃

β≤γ<α
T γ(E)

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
.

The set B of best candidates for the set of truths is the set of evaluations B,

such that for some interpretation E , for all ordinals α, there is an ordinal β > α
such that B = T β(E).7

These best candidates give the correct truth value to a lot of sentences that,

according to intuition, are unproblematically true or false. So for example

A1�A5 and B1�B4 (and the *-variant) have the right truth values in all of the

best candidates, and every sentence that is true (false) in the basic version of

Kripke's theory is also true (false) in the best candidates. Yet, arguably, none

of the best candidates are good. We are right back at the problems that drove

Tarski to �ban� self-reference: the Liar is true in some of the best candidates

and false in others, both of which are bad, while �The Liar is true� has the

opposite truth value.8 Ergo, the T-schema is not validated, so according to
6The aim of this section is to see whether the machinery of revision theory can be used
to formulate an acceptable theory of grounded truth in the sense of section 6.2. I am not
engaging with revision theory as it is interpreted philosophically by Gupta, Belnap and
Herzberger, for their aim is quite di�erent.
7See (Gupta 1982, 44�45).
8At least that is the case with the �successor stage candidates�. With some of the limit
stage candidates, it is not. But in these, the truth values of some sentences are just the
arbitrary value of the initial evaluation, so any advantage these candidates may have over
the successor stage candidates is purely a result of arbitrariness.
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Tarski's (1944, 344) adequacy condition, these candidate truth predicates are

not truth predicates at all.

The advantages of revision theory over Kripke's theory are achieved using

techniques that are not groundedness-acceptable, for the construction of each

of the sequences is not based on established facts (i.e. the model) alone, but

also on an initial evaluation that is not fact but �ction.

A di�erent version of revision theory is that the �real� truths are the stable

truths, and the �real� falsehoods are the stable falsehoods. A sentence φ is

stably true if φ ∈ ⋂B and stably false if φ ∉ ⋃B.9 By supervaluating over

all initial evaluations and all the best candidates they result in, we obtain one

de�nite set of truths and one de�nite set of falsehoods. However, this method

also gives us sentences that are neither. Again, we have a trivalent semantics.

However, this supervaluation version of revision theory is also not grounded-

ness-acceptable. The problem that the construction is not based on established

facts but on �ctions remains. There is an interesting catch-22 phenomenon

here. The best candidates for the extension of truth are unacceptable because

they are each based on just one initial evaluation which is a hypothesis and

not fact. Supervaluations can be seen as an attempt to resolve this problem.

The rationale would be that while one evaluation is a hypothesis, what is

true relative to all possible evaluations is based upon facts; so the truths and

falsehoods that are common to all possible evaluations are based on facts, no

matter what happens to be factual, and thus they are groundedness-acceptable.

However, this rationale does not hold, for the supervaluation gives rise to a

trivalent semantics, and when one accepts such a semantics, one can no longer

hold the set of all bivalent truth-value ascriptions to represent all possible states

of a�airs. Herein lies the catch-22: In the attempt to consider all possible states

of a�airs, one has to admit that they are not all the possible states of a�airs

after all. For a supervaluation theory to be acceptable, the kind of evaluations

(bivalent, trivalent) quanti�ed over must be of the same kind as the possible

outcomes of this supervaluation.10 I will propose such a theory.

In addition to this problem of philosophical justi�cation, the supervaluation

version of revision theory shares the problem of lack of compositionality with

the supervaluation version of Kripke's theory. There are disjunctions that are

declared true even though none of the disjuncts are, for example the one with

the Liar and its negation.

9See (Gupta 1982, 46).
10I only have the present context, i.e. theories of truth, in mind with this claim. There may
be other �elds, for example the semantics of vagueness, where the use of supervaluations to
go from a set of one kind of evaluations to an evaluation of another kind makes good sense.
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On top of all this, the revision theory does actually not really meet Gupta's

Challenge. For the solutions to the two versions considered up to now depend

on the number of iterations of the truth predicate in the analogue of A3 being

identical with the number of iterations of the truth predicate in the analogue

of A5.

The reason that the theory leads to the intuitively correct result in the original

version of the Challenge is as follows: No matter what the initial evaluation is,

the six sentences without the truth predicate receive the right value at level 1

and maintain them thereafter. Then, no matter what the value of B4 is, one

of the sentences A3 and A5 becomes true and the other false. Therefore, B4

becomes true, which then causes A3 to become true and A5 to become false.

Adding a truth predicate to both A3 and A5 does not change much. It just

means that for A3* and A5* there is an extra delay of one level before the

truth values settle into the right ones.

But if, for example, A5 is replaced with A5* while A3 is retained, the truth

values for the sentences do not stabilize for all initial evaluations; for then the

two sentences draw their values from di�erent levels, so to speak, and may

become true simultaneously, causing B4 to become false. This table shows

what happens when the initial evaluation is one that assigns falsity to all the

sentences involved (the pattern in levels 1�3 is repeated in levels 4�6 and ad

in�nitum):

Level 0 1 2 3 4 5 6 ⋯
A3 � � ⊺ ⊺ � ⊺ ⊺ ⋯
A5* � � ⊺ � � ⊺ � ⋯
B4 � ⊺ ⊺ � ⊺ ⊺ � ⋯

The intuitive argument presented in Section 6.1 is equally strong no matter

how many additional truth predicates are applied to some of the sentences.

Therefore this failure shows that revision theory does not get to the heart of

the problem.11

11Variants of the revision theory with di�erent limit rules are proposed in (Herzberger 1982)
and (Belnap 1982). According to Gupta, a sentence that has not reached stability at a given
limit ordinal should revert to its truth value in the initial evaluation. Herzberger suggests
that it should revert to falsity, which will not help. Belnap thinks that we should consider all
possible limit rules as long as they retain the truth values of sentences that have stabilized.
He further believes that we should quantify over all such rules, and only consider a sentence
to be true or false if it stabilizes as such under all rules. On this proposal, the A3/A5* version
will also not arrive at the intuitively correct values, as one of the limit rules quanti�ed over
is the one starting with universal falsity and always reverting to falsity. Technically it is
possible to deal with the Challenge within the framework of revision theory, namely by
using �fully varied revision sequences�; see pages 168 and 228 in (Gupta and Belnap 1993).
Then for each revision sequence there would be a limit ordinal where the �right� values
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It has been argued above that we can safely infer that at most one of A3 and

A5 can be true. To conclude from this that at most one of A3 and A5* (this

example is easily generalizable) can be true, all that is needed is that A5 is true

i� A5* is true. But that is merely an instance of that version of the T-schema

(see Section 5.2) which holds in the supervaluation version of revision theory

and in all versions of Kripke's.12

From the considerations of this and the previous section we can draw the con-

clusion that Kripke's supervaluation theories share three problems with the su-

pervaluation version of revision theory. They both result in non-compositional

semantics; they both only quantify over two-valued evaluations, but deliver

three-valued evaluations; and both are inadequate to handle all versions of

Gupta's Challenge. A version of Kripke's theory with a di�erent form of super-

valuation can solve the �rst two problems and make progress on the third.

6.5 The alternative

Before presenting this alternative form of supervaluation, I need to address

the issue of the semantics of the truth predicate: for each of the three possible

truth values of a sentence φ, what should the truth value of the sentence T (cφ),
claiming truth of φ, be? The naïve answer is that T (cφ) should be true when

φ is true, false when φ is false, and also false when φ is unde�ned. However,

general use of that rule leads to paradox. If the Liar is unde�ned, the sentence

claiming that the Liar is true would become false, and then the negation of

that sentence, which is the Liar itself, would become true.

Kripke responds to this problem by not using the naïve rule under any cir-

cumstances. Instead he always has T (cφ) unde�ned when φ is unde�ned. Use

of this rule is seemingly required to get the monotonicity which is crucial to

his construction. Otherwise we run the risk that at some stage T (cφ) is made

false because φ is (still) unde�ned, and then at a later stage φ becomes true

and hence T (cφ) becomes true. What I will show is that in some cases, the

naïve rule can be safely employed. We will experiment with this in order to

get the intuitively correct result for Gupta's Challenge.

would be assigned and thereafter kept. However, this is to search for consistent evaluations
of sentences (see footnote 1), not to make a sentence true when there is a fact it can be
grounded in.
12The A3/A5* version of the Challenge is discussed by Gupta and Belnap (1993, 228) who
claim that �The intuitive argument [. . . ] no longer goes through, since now A's statements
[A3] and [A5*] do not contradict each other. To show that [A3] and [B4] are true one needs
to appeal to an instance of the T-step, e.g., [A5* i� A5] which is not validated [...]�. I beg to
di�er: the intuitive argument does go through. Gupta and Belnap provide no philosophical
argument in the text, but simply reiterate the consequences of their theory for the case at
hand.
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Figure 6.1

To perform supervaluation in a groundedness-acceptable way, we need to con-

sider all possible evaluations, i.e. all possible extensions of the evaluation at

some given level. Here is a way that this can be done in the case of Gupta's

sentences using trees.13 Consider the tree depicted in Figure 6.1. Here B4 is

at the top (the �root�) and at the nodes below it are the sentences on which

the truth value of B4 depends. (I am here relying on an intuitive notion of

dependency. It will be replaced by a precise de�nition in the next section.)

Below A3 and A5 are, in turn, the sentences they depend upon. The di�erent

possible evaluations correspond to the di�erent ways truth values can be as-

signed to the nodes, in such a way that nodes with other nodes below them are

assigned truth values in accordance with the strong Kleene scheme based on

the values of those nodes. The set of all such possible evaluations will reveal

that certain combinations of truth values are impossible, in casu the combina-

tion of A3 being true and A5 being true. This corresponds to the crucial step

in the intuitive argument for the truth values of the nine sentences: inferring

that A3 and A5 contradict each other independently of what their actual truth

values are.

The nodes with the sentences B1�B3 should of course be assigned the value

⊺ and the nodes with A1, A2 and A4, the value �. If we assign ⊺ to the two

end nodes with B4, then under the compositional rules we should assign ⊺ to

A3 and � to A5 and therefore the root should get the value ⊺. If we instead

assign � to the end nodes with B4, the assignment to A3 and A5 should be

the other way around but again the root gets a ⊺.

Lastly, we can assign the value of unde�ned to B4 at the bottom. Recall that

A5 is �Something B says is not true� and that everything else that B says is

true. So when B4 is unde�ned and a fortiori not true, A5 is intuitively true.

Similarly, A3 (�Everything B says is true�) is intuitively false. If we assign

these values to the two nodes, the root again becomes true. So in all of the

possible cases, B4 becomes true and we can supervaluate it as such.

13Using trees in the formulation of theories of truth has, as far as I know, only been done
by Davis (1979), and he merely used it to provide an equivalent formulation of the basic
version of Kripke's theory (more on this in section 6.10).
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Note that the intuitive argument for the truth values of A3, A5 and B4 does

not rely on a hidden premise that these sentences have proper truth values.

Therefore this seems to be a reasonable thing to do.

However, were we to follow rules analogous to those of Kripke's basic theory,

the assignment of + to the end nodes with B4 would result in also A3, A5

and the root receiving the value +. The rule in question is the weak rule for

truth, that whenever a sentence φ is unde�ned, so is T (cφ). What I just did

amounts to letting T (cφ) be false when φ is unde�ned in one of the evaluations

quanti�ed over when supervaluating. In the current setting, this can be done

in some situations without the danger of making T (cφ) false because φ is

unde�ned at some stage and then having φ become true at a later stage. The

situations are those where a node with T (cφ) has the root sentence below it

with the value +. (This criterion needs to be generalized, but for expository

reasons that is postponed to Section 6.8.)

The reason is simple: We are only using the strong rule in an evaluation which

is considered together with several other evaluations in a supervaluation. In

other of those evaluations the end node with φ is assigned ⊺, and only when

those evaluations assign the same value to the root do we go ahead and assign

the root sentence an actual truth value. In this way we are, so to speak,

safeguarding ourselves against the possibility that a later stage in the iteration

of the jump rule will contradict what we based our truth-value assignments

on at the present stage. That is why this limited use of the strong truth rule

does not lead to inconsistency.

The use of the rule is restricted in two ways that should be distinguished.

First, it is only used in the evaluations that are quanti�ed over. That is, if

some sentence φ is left unde�ned at a given level, because the supervaluation

for it did not deliver a de�nite result, that is not taken as a su�cient basis

for making T (cφ) false. Second, the strong rule is limited in its application to

nodes in a tree that has the root sentence appearing again below it, where it is

assigned +. The �rst restriction is su�cient for avoiding inconsistency.14 The

second restriction is in place to secure compositionality.15

To see why the second restriction is needed for that job, let us contrast the

case of B4 with the example T (cφ) ∨ ¬T (cφ) where cφ denotes some sentence

φ which is not T (cφ) ∨ ¬T (cφ) itself or either of its disjuncts. A tree for this

disjunction is the one shown in Figure 6.2. Assigning values to the nodes

14Theorem 6.6 below does not depend on the second restriction.
15So if we were happy with true disjunctions without true disjuncts (as in Kripke's superval-
uation), we could formulate a version of the theory with just the �rst restriction and handle
Gupta's Challenge (unlike in Kripke's supervaluation) with that alone.
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of this tree in the same way as before, we again arrive at three possibilities.

We can assign ⊺ to the end nodes, which results in the root also getting the

value ⊺. Assigning � to the end nodes has the same result. When the end

nodes are given the value +, so must the nodes above them including the root,

for otherwise we would make any such disjunction true even though there is

no guarantee that either of the disjuncts will become true.

As will be demonstrated, this method of supervaluation is �reluctant� in assign-

ing truth and falsity, to the point that if it does, the compositional demands for

that truth value are guaranteed to be satis�ed. For example, if a disjunction

is made true, then one of its disjuncts will be too.

The theory to be formulated will be a modi�cation of Kripke's. We adopt

the technique of reaching a �xed point through a trans�nite series of levels

of increasingly more extensive partial interpretations of the truth predicate,

using a jump rule to get from one level to the next, and taking unions at limit

levels. Only the jump rule is new. The assignment of a truth value to a given

sentence at a given level is now decided by considering trees for the sentence.

A tree for a given sentence is constructed by placing that sentence at the

root, and below that placing nodes with the constituents of that sentence,

and then iterating. By �constituents� I mean immediate syntactical parts, in

the case of connectives; all the instances, in the case of quanti�ers; and the

sentence referred to, in the case of a sentence claiming the truth of another

sentence. The �treebuilding� is stopped when an atomic sentence with an

ordinary predicate is reached, when the root sentence reappears, before any

other sentence appears so as to have itself as predecessor (in order not to make

it a revision theory) or at any earlier point. Also, we only consider trees for

which it holds that each �route� from the root down through the tree is �nite,

so that truth values can be assigned to the nodes in a well-founded way and

�travel� all the way from the end nodes to the root.
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A tree is evaluated in the direction from the end nodes to the root. The

values of some nodes are �xed: if the sentence at a given node has a truth

value from an earlier level, the node has that value; if it is an atomic sentence

with an ordinary predicate, its value is decided in the normal way; if it is

an atomic sentence with the truth predicate and a constant not denoting a

sentence, it is false. The remaining end nodes can have any of the values true,

false and unde�ned, albeit with the restriction that if two nodes are labeled

with the same sentence, they must have the same truth value. Indeed, we

impose this demand not only on the end nodes, but on all nodes except for

the root.16 The remaining non-end nodes are given values based on the values

of the nodes immediately below them. For this, the strong Kleene scheme and

Tarski's T-schema with the previously explained modi�cation are used.

In this way, the three problems mentioned at the end of the last section are

solved. First, the �xed point is compositional. Second, the three-valued evalu-

ations are reached by quantifying over three-valued evaluations, such that we

are genuinely taking all possibilities into account. And third, this theory is

not vulnerable to iterated uses of the truth predicate in versions of Gupta's

Challenge: if A3* is inserted between the root and the A3 node in the tree in

Figure 6.1, and/or A5* is inserted similarly, the result is the same; the truth

values merely have to �travel up� one more node. With this theory we check the

consequences, for the truth value of a sentence, of the assignment of di�erent

truth values to other sentences through several iterations of the truth predi-

cate, while Kripke's theory arbitrarily restricts such consequence-checking to

just one iteration.

6.6 The formal theory

We are now ready to formulate the theory precisely, beginning with a rather

long list of de�nitions relating to trees. A tree17 is a triple Tr = (N,<, l) such
that N is any set; < is a partial order on N such that for every element of N ,

the set of predecessors of this element is linearly ordered and �nite and there

is an element of N called the root that is a predecessor of every other element

of N ; and l is a function from N to S. The elements of N are called nodes;

a node without successors is called an end node; and for each node n, l(n) is

16The grounding relation has two relata: that which is grounded in something and that
which it is grounded in. The root represents the former relata and the rest of the nodes
the latter relata. That is why we should not extend the restriction to also involve the
root. Doing so would have the consequence that a sentence would be made true simply
because truth is the only proper truth value it can consistently have. And it would not be
groundedness-acceptable to have that as a su�cient condition.
17This de�nition is more restrictive than what is standard.
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called the label of n. If a node n has a unique immediate successor labeled

φ, then �nφ� denotes this successor.

We will consider isomorphic trees to be identical. So, what the elements of N

are is of no importance � only the cardinality of N is. (Just think of them as

the dots that are connected in a typical graphical representation of a tree.)

Given a tree Tr = (N,<, l), a trimmed tree of Tr is de�ned to be a triple

Tr′ = (N ′,<′, l′) in which N ′ is a subset of N , such that

� for each node n of N , if n ∈ N ′, then all the predecessors of n (by <) are
as well, and

� for each node n of N , of the immediate successors of n, either all of them

or none of them are in N ′,

and <′ and l′ are the restrictions of < and l, respectively, to N ′. This and the

next two de�nitions are illustrated in Figure 6.3.

Given a tree Tr = (N,<, l) and a node n ∈ N , the sub-tree of Tr generated

by n is the triple Tr′ = (N ′,<′, l′) such that N ′ is the subset of N consisting

of n and all its successors, and <′ and l′ are again the restrictions of < and l,

respectively, to N ′. Note that both trimmed trees and sub-trees generated by

a node are trees.

A branch of Tr is a maximal linearly ordered subset of the nodes of Tr.

Given a sentence ξ, the constituents of ξ are

� φ if ξ is ¬φ,

� φ and ψ if ξ is φ ∨ ψ,
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� every sentence of the form φ(v/c) where c is a constant if ξ is ∃vφ,

� the sentence I(c) if ξ is T (c) and I(c) is a sentence,

� nothing if ξ is T (c) and I(c) is not a sentence, and

� nothing if ξ is P (c1, . . . , cn) where P is an ordinary predicate.

Given a sentence ξ, the full tree for ξ is the tree such that the root is labeled

with ξ and for every node n, the following holds: 1) If l(n) is ξ and n is not the

root, or one of the constituents of l(n) is the label of a non-root predecessor of
n, then n has no successors. 2) Otherwise n has one immediate successor for

each of the constituents of l(n), and these successors are labeled with these

constituents. A trimmed tree of the full tree for ξ is called a tree for ξ if each

branch thereof is �nite.

Note that this means that the full tree for ξ is not a tree for ξ if it has in�nite

branches, as is the case for, e.g., the sentences of Yablo's (1993) Paradox. To

be able to evaluate a tree it has to bottom out in end nodes and therefore we

cannot always use the full tree. We therefore have to cut it of at some point.

This introduces a complication: there is no canonical way to decide how far

down to cut it of, so we need to consider a set of trees for each sentence instead

of just one. The complication is small though, for if one tree is adequate to

rule out enough combinations of truth values to make ξ true, say, then those

combinations really are impossible and ξ should be made true. On the other

hand, if a given combination is not ruled out, that may just be because the

tree is too small. (Consider for example the tree in Figure 6.1 with the bottom

row of B nodes removed; using that trimmed tree it would not be possible to

rule out that both A3 and A5 could be true.) Therefore, it is reasonable to

say that a sentence is given a truth value when just one tree provides that

judgment, i.e. when all the evaluations for that tree agree.

We de�ne an evaluation of a tree for some sentence ξ relative to some

evaluation E = (T,F ) (a �tree-evaluation� or, when there is no risk of mis-

understanding, just �evaluation�) as a function e from the nodes of the tree to

{⊺,�,+} such that for every node n,

SEa) if n is not the root, then for every other non-root node n′ such that

l(n) = l(n′), e(n) is identical to e(n′);

SEb) if l(n) is in T (F ) and n is not the root, then e(n) equals ⊺ (�);

SEc) if l(n) is of the form T (c) where c is a constant and I(c) is not a sentence,
then e(n) = �; and
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SE1) if l(n) is of the form P (c1, . . . , cn) where P is an ordinary n-ary predicate

and c1, . . . , cn are constants, then

� e(n) = ⊺ if (I(c1), . . . , I(cn)) ∈ I(P ), and
� e(n) = � otherwise,

and for every non-end node n, the following is true:

SE2) If l(n) is of the form ¬φ where φ is a sentence, then

� e(n) = ⊺ if e(nφ) = �,
� e(n) = � if e(nφ) = ⊺, and
� e(n) = + otherwise.

SE3) If l(n) is of the form φ ∨ ψ where φ and ψ are sentences, then

� e(n) = ⊺ if e(nφ) = ⊺ or e(nψ) = ⊺,
� e(n) = � if e(nφ) = � and e(nψ) = �, and
� e(n) = + otherwise.

SE4) If l(n) is of the form ∃xφ where x is a variable and φ is a formula with

at most x free, then

� e(n) = ⊺ if there exists a constant c such that e(nφ(x/c)) = ⊺,
� e(n) = � if for every constant c it holds that e(nφ(x/c)) = �, and
� e(n) = + otherwise.

SE5) If l(n) is of the form T (c) where c is a constant, then

� e(n) = ⊺ if e(nI(c)) = ⊺,
� e(n) = � if e(nI(c)) = �,
� e(n) = � if e(nI(c)) = + and there is a node labeled l(n) with a suc-

cessor m with l(m) = ξ and e(m) = +, and
� e(n) = + otherwise.

The third bullet of SE5 is the implementation of the strong truth rule. The

second conjunct of the condition imposes the restriction on the use of that

strong rule explained in the italicized sentence on page 163, above.

We de�ne the supervaluation with respect to the evaluation E = (T,F )
as SEE = (STE , SFE) where STE (SFE) is the set of those sentences ξ, such

that for some tree for ξ, all evaluations of this tree relative to E have ⊺ (�) as
the value of the root.18 Such a tree decides ξ with respect to E , and we

18Note that if there is no evaluation of some tree for a sentence, the sentence becomes both
true and false. It needs to be proved that this situation cannot arise.
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Figure 6.4

say that E makes ξ true (false). In contrast, saying that ξ is true (false)

in E still means that ξ ∈ T (ξ ∈ F ).

For all ordinals α, the supervaluation at level α, SEα, is de�ned by recur-

sion:

SEα =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∅,∅) if α = 0

SESEα−1 if α is a successor ordinal

(⋃η<α STSEη ,⋃η<α SFSEη) if α is a limit ordinal ≠ 0

A tree decides a sentence at a successor level α, if the tree decides the

sentence with respect to SEα−1, and the sentence is then made true/false at

level α.

Figure 6.4 shows two examples of trees. The example on the left is the full

tree, and also a tree, for the Liar. That is, cl is a constant denoting ¬T (cl).
At the �rst level, this tree has three evaluations. The �rst assigns ⊺ to the

end node and to the �middle node� and � to the root. The second is the other

way around: � to the two bottom nodes and ⊺ to the root. The third assigns

+ to the end node. Then the third bullet of SE5 kicks in and assigns � to the

middle node. So again the root is assigned ⊺. Ergo, the evaluations do not

agree on a value for the root and hence ¬T (cl) is not given a truth value in the

supervaluation. As the reader can easily verify, the smaller trees for ¬T (cl),
along with the trees for T (cl), also have disagreeing evaluations. Therefore,

the evaluations for these trees are exactly the same at every level.

The example on the right is about the sentence T (c) where I(c) = (P (14) ∨
T (c))∧¬T (c). The predicate P means �is prime� and 14 is a constant with the

obvious denotation. Intuitively P (14)∨T (c) and ¬T (c) contradict each other,

since 14 is composite. Ergo T (c) should be false. As in the Liar example,

the tree depicted here is both the full tree and a tree for the root sentence.

And at the �rst level this tree also has three evaluations; SEa and SE1 prevent
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there from being more. They all assign � to the node labeled P (14). The

�rst further assigns ⊺ to the end nodes labeled T (c) and to the node labeled

P (14) ∨ T (c) and � to all the remaining nodes. The second makes those end

nodes �, the node labeled ¬T (c) ⊺, and the rest of the nodes �. The third

leaves the two end nodes with a +, resulting in the three nodes in the middle

getting + too, whereupon the third bullet of SE5 again takes e�ect so that the

root is assigned �. In this case, all the evaluations agree on the root, so T (c) is
made false at level 1. As a consequence, at all higher levels this tree only has

one evaluation, namely the second mentioned of the three. At level 2, ¬T (cφ)
is made true by the two-node sub-tree generated by the node labeled with that

sentence. Similarly, P (14) ∨ T (c) and (P (14) ∨ T (c)) ∧ ¬T (c) are made false

at level 2, securing compositionality.

In order to conclude the statement of the theory we need to prove monotonic-

ity, the existence of a �xed point, and consistency, but this is postponed to

Section 6.9. We refer to the �xed point as SE . For all sentences ξ we say that

ξ is true if ξ is in the truth set of SE , false if ξ is in the falsity set of SE , and
unde�ned otherwise.

6.7 Meeting Gupta's Challenge

We can now apply the theory to Gupta's Challenge. Let A and B be unary

predicates interpreted as �is a sentence spoken by A� and �is a sentence spoken

by B� respectively; and let = be a binary predicate meaning �are identical�.

Then the sentences A3, A5 and B4 can be formalized as follows:

∀x(B(x) → T (x))(A3)

∃x(B(x) ∧ ¬T (x))(A5)

∀x∀y(A(x) ∧ T (x) ∧A(y) ∧ T (y) → =(x, y))(B4)

A tree for (B4) is outlined in Figure 6.5. The constants cA3, cA5, and cB4 refer

to (A3), (A5), and (B4) respectively. It is here assumed for the sake of simplic-

ity that no other constants refer to these sentences. Another simpli�cation is

that it is pretended that conjunction and the conditional are primitive connec-

tives and that multiple sentences can be concatenated with connectives going

just one node up. I leave it to the reader to verify that these simpli�cations

do not a�ect the conclusion.

It is easily veri�ed that all instances of the doubly universally quanti�ed sen-

tence (B4) which are not displayed in the �gure are assigned the value ⊺.
Therefore there are only three essentially di�erent evaluations of this tree.
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First, there is a tree-evaluation that gives the value ⊺ to the two end nodes

labeled (B4). In this evaluation, the nodes labeled T (cB4) have the value ⊺,
and the node labeled ¬T (cB4) the value �. The nodes with B(cB4) have the

value ⊺. Ergo, the nodes labeled B(cB4) → T (cB4) and B(cB4)∧¬T (cB4) have
the values ⊺ and � respectively. Under the node labeled (A3) there is an in�nity
of nodes, of which all that are not shown also have the value ⊺, so this node

also has the value ⊺ in this evaluation. Similarly, all the other nodes under the

node labeled (A5) have the value �, so this node does as well. It follows that

the two nodes labeled T (cA3) and T (cA5) have the values ⊺ and � respectively.
Hence, the node labeled A(cA3) ∧ T (cA3) ∧A(cA5) ∧ T (cA5) → =(cA3, cA5) has
the value ⊺. All other nodes with sentences of the same form also have the

value ⊺, and therefore the root must too.

Second, there is a tree-evaluation that assigns the value � to the two end nodes
labeled (B4). The fact that this evaluation also makes the root true follows by

analogous reasoning.

The third and �nal tree-evaluation gives the value + to the two nodes labeled

(B4). Then, by the third bullet of SE5, the nodes labeled T (cB4) have the
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value �, and therefore the rest of the evaluation is exactly as when � was

assigned to the two end nodes labeled (B4).

Because of SEa, there are no other tree-evaluations. From this, it follows

from the de�nition of supervaluation that (B4) is made true at level 1. From

monotonicity it then follows that (B4) is true.

Then at level 2, we only need to look at the tree for (A3) which ends at the

node labeled (B4) (or to put it more precisely: the tree for (A3) which is the

sub-tree generated by the node labeled (A3) in the tree in the �gure). Now

there is only one evaluation of this tree, namely the evaluation in which the

node labeled (B4), and hence the root, is given the value ⊺. That is, (A3)

is determined to be true at level 2. Similarly and simultaneously, (A5) is

made false.

So this theory handles Gupta's Challenge as desired. And Gupta's �revenge� in

the form of replacing A3 and A5 with A3* and A5* does not bite. The proof

goes through with minor modi�cations: Insert two more nodes with labels

T (cTA3) and T (cTA5) in the middle of the tree as immediate predecessors

of the nodes labeled T (cA3) and T (cA5), respectively. The constant cTA3
obviously refers to T (cA3), and cTA5 to T (cA5). The three evaluations at

level 1 are essentially as before; the truth values just have to �travel up one

more node� with T (cTA3) getting the same truth value as T (cA3), and T (cTA5)
getting the same the same as T (cA5). The combination of A3 with A5* works

just as well.

6.8 A generalization

However, the theory, as stated, does not handle all Gupta-style challenges

adequately. If we modify the story, so that person B says one more sentence,

namely

B5: At least two things A says are true

intuition still insists that all ten sentences have proper truth values. The

reasoning is only a slight modi�cation of that in Section 6.1: A3 and A5

contradict each other, so at most one of them can be true. Hence at most one

thing A says is true. So B4 is true and B5 is false. Ergo, A3 is false and A5 is

true. These truth values are also, to use the language of Section 6.2, grounded

in facts about which combinations of truth values are possible.

Figure 6.6 shows, in simpli�ed form, trees for B4 and B5. The following tables

detail the nine evaluations of each of the trees.
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Figure 6.6

B4 (root) ⊺ + ⊺ ⊺ ⊺ ⊺ ⊺ ⊺ ⊺
A3 ⊺ + � � � � � � �
A5 � + ⊺ ⊺ ⊺ ⊺ ⊺ ⊺ ⊺
B4 ⊺ ⊺ ⊺ + + + � � �
B5 ⊺ + � ⊺ + � ⊺ + �

B5 (root) � � � + � � � � �
A3 ⊺ � � + � � � � �
A5 � ⊺ ⊺ + ⊺ ⊺ ⊺ ⊺ ⊺
B4 ⊺ ⊺ ⊺ + + + � � �
B5 ⊺ + � ⊺ + � ⊺ + �

The top row of the �rst table only contains the values true and unde�ned and

so �almost� makes B4 true. Not quite, though, for in one tree-evaluation the

root is unde�ned. Similarly, B5 is not supervaluated as false.

Making B4 true and B5 false can be done without taking the risk of applying

the strong rule for the truth predicate to an unde�ned sentence that at a later

stage becomes true. We just need to consider the two sentences �simultane-

ously�, a complication that the present rules do not take into account.

We can remedy the situation by amending the theory as follows: For each set

of sentences S, we consider all sets of trees containing exactly one tree Trξ
for each ξ ∈ S, such that elements of S are only labels of root nodes and end

nodes. Then we replace �l(m) = ξ� in the third bullet of SE5 with �l(m) ∈ S�.
If it holds for each Trξ that all evaluations of it assign the same value to the

root, then all the sentences in S are given these root values. With this change,

which is a straightforward generalization of the original theory in which S was

only allowed to be a singleton, B4 is made true and B5 false, in accordance

with the intuitive verdict. A3 and A5 are similarly given the right truth values

(now already at level 1).

To be more precise, we change four of the de�nitions. First, the de�nition of

full tree is altered to read as follows: given a sentence ξ and a set of sentences

S containing ξ, the full tree for ξ relative to S is the tree such that the
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root is labeled with ξ and for every node n, the following holds: 1) If l(n) is

an element of S and n is not the root, or one of the constituents of l(n) is the
label of a non-root predecessor of n, then n has no successors. 2) Otherwise,

n has one immediate successor for each of the constituents of l(n), and these

successors are labeled with these constituents. For some examples, consider

Figure 6.4 again. The tree on the left is the full tree for ¬T (cl) relative to

S for any S that does not include T (cl). If S does include T (cl), the full

tree stops one node higher up. Similarly, the tree on the right is the full tree

for T (c) relative to any S that does not include any of the three sentences

(P (14) ∨ T (c)) ∧ ¬T (c), P (14) ∨ T (c) and ¬T (c). If it does include, say,

P (14) ∨T (c), remove the two left-most end nodes to get the full tree for T (c)
relative to S.

Second, the de�nition of a tree is relativized to S in the obvious way. Third,

the de�nition of tree-evaluation is relativized to S by changing �l(m) = ξ� to
�l(m) ∈ S�. And fourth, supervaluation with respect to the evaluation

E = (T,F ) is rede�ned as SEE = (STE , SFE) where STE (SFE) is the set of

those sentences ξ, such that for some set of sentences S containing ξ and

some tree for ξ relative to S, all evaluations of this tree relative to E and S has

⊺ (�) as the value of the root; and further, that for all the other elements of S

there are also trees for them relative to S, all the evaluations of which agree on

assigning ⊺ or agree on assigning � to the root. Such a tree decides ξ with

respect to E , and we say that E makes ξ true (false) (among S).

6.9 Theorems and proofs

For this generalized theory we can now prove the promised theorems.

Lemma 6.1. For any evaluation E, extension E ′ of E, sentence ξ, set of

sentences S containing ξ, tree Tr for ξ relative to S, and evaluation e of Tr

relative to S and E ′, the tree-evaluation e is also an evaluation of Tr relative

to S and E.

Proof. If one of the antecedents of SEb is satis�ed for E , then the same an-

tecedent is satis�ed for E ′. So a restriction on what counts as an evaluation of

the tree imposed by this clause in the case of E also applies in the case of E ′.
The same holds trivially for the other clauses.

Lemma 6.2. For any evaluation E and extension E ′ of E, SEE ′ is an extension

of SEE .

Proof. For any sentence ξ, set of sentences S containing ξ, and tree for that

sentence relative to S, the set of evaluations of the tree relative to S and E ′ is
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a subset of the set of evaluations of the tree relative to E . This follows from

Lemma 6.1. So ξ satis�es the criterion for being in STE ′ (SFE ′) if it satis�es

the criterion for being in STE (SFE).

Theorem 6.3 (Monotonicity). For all ordinals α and β, if α < β then SEβ is

an extension of SEα.

Proof. As SE0 is empty, this follows from Lemma 6.2 by induction.

Theorem 6.4 (Fixed point). There is an ordinal α such that for all ordinals

β > α, SEβ = SEα.

Proof. This follows from Theorem 6.3 by the usual cardinality argument.

As prematurely mentioned, we refer to the �xed point as SE .

The basic idea for the consistency proof is to show that the largest intrinsic

�xed point of the strong Kleene jump is an extension of SE . For this, we need
some de�nitions. �Fixed point of the strong Kleene jump� will be shortened

to FPSK (and following Kripke, we will take these to include only consistent

evaluations). An evaluation E is an intrinsic FPSK if E is an FPSK and it

is the case that for any FPSK E ′ there exists an FPSK E ′′ that is an extension

of both E and E ′. In that case, the elements of the truth (falsity) set of E are

called intrinsically true (false). Of the intrinsic FPSKs, one is the largest

(Kripke 1975, 709). We denote it I.

For any set of sentences S, function π ∶ S → {⊺,�} and FPSK E = (T,F ), let Eπ

be (T ∪π−1(⊺), F ∪π−1(�)). The closure of (E , π), denoted cl(E , π), is de�ned
as the smallest extension (CT,CF ) of Eπ such that if φ ∈ CT or ψ ∈ CT , then
φ ∨ ψ ∈ CT ; and if φ ∈ CF and ψ ∈ CF then φ ∨ ψ ∈ CF and similarly for

negation, the existential quanti�er and the truth predicate (we refer to these

as closure rules). The semi-closure of (E , π), denoted cl−(E , π), is de�ned
as the smallest extension (CT,CF ) of Eπ such that if φ ∈ CT or ψ ∈ CT and

φ ∨ ψ ∉ S, then φ ∨ ψ ∈ CT ; and if φ ∈ CF and ψ ∈ CF and φ ∨ ψ ∉ S, then
φ ∨ ψ ∈ CF and similarly for negation, etc.

There are two things about these de�nitions that should be noted. First,

closure could just as well have been de�ned as a function on Eπ, for it does
not matter which truths and falsities �comes from� E and which from π. The

only reason for not de�ning it like that is the desire to have the wording of the

de�nition as close as possible to that of semi-closure. For semi-closure it does

matter what comes from E and what from π. Second, cl(E , π) may not be an

FPSK. As no restrictions have been placed on π, it may, for example, take a

disjunction to ⊺, so that that disjunction is also true in cl(E , π), without either
of the disjuncts being true in cl(E , π). Another reason that cl(E , π) may not
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be an FPSK is that it can be inconsistent. Taking the closure of (E , π) is like
doing the Kripke iteration starting from Eπ except that monotonicity is forced.

The following lemma gives a condition under which cl(E , π) is an FPSK:

Lemma 6.5. Let S be a set of sentences, π a function S → {⊺,�} and E an

FPSK such that cl(E , π) is consistent. For each ξ ∈ S, let Trξ = (Nξ,<ξ, lξ)
be a tree for ξ relative to S with more than one node. Let eξ be the function

from Nξ to {⊺,�,+} de�ned by having, for each n ∈ Nξ, e(n) = ⊺ (�; +) if l(n)
is true (false; unde�ned) in cl(E , π). If for each ξ, eξ is an evaluation of Trξ
relative to S and (∅,∅), then cl(E , π) is an FPSK.

Proof. Let E∗ be the result of applying the strong Kleene jump to cl(E , π). We

need to show that cl(E , π) is an extension of E∗ and that E∗ is an extension of

cl(E , π). The former follows directly from the de�nition of cl. To demonstrate

the latter it is enough to show that for all ξ ∈ S, ξ is false in E∗ if π(ξ) = � and

true in E∗ if π(ξ) = ⊺. So let an ξ ∈ S be given.

As eξ is an evaluation of Trξ and assigns π(ξ) to the root labeled ξ, eξ and

thereby cl(E , π) assign values to the immediate successors of the root/the

constituents of ξ in such a way that (if ξ is an atomic sentence with the truth

predicate) the T-scheme is satis�ed (because the assignment of π(ξ′) to end

nodes labeled with a ξ′ ∈ S implies that the third bullet of SE5 is not applied)

or (if ξ is any other type of sentence) the strong Kleene scheme is satis�ed.

Each of those constituents φ satis�es the T-schema/the strong Kleene scheme

in relation to its constituents: if φ is an element of S, this follows from similar

considerations about the root and its immediate successors in Trφ, and if not,

it follows from the de�nition of cl(E , π).

For each constituent, continue like this until either 1) reaching sentences that

do not have constituents or 2) passing from atomic sentences with the truth

predicate to their constituents. Having the latter (with their associated truth

values) in cl(E , π) is su�cient for having ξ false in E∗ if π(ξ) = � and having

ξ true in E∗ if π(ξ) = ⊺.

Theorem 6.6. SE is consistent.

Proof. We prove by induction that SEα is consistent and that I is an extension
of SEα. The base and limit cases are trivial. So for the successor case, let an

α be given and assume that I is an extension of SEα. Let ξ be a sentence.

We �rst prove that ξ is not made both true and false by SEα among the same

S. To do so it must be demonstrated that a) every tree for ξ relative to S has

an evaluation relative to SEα and b) there is not one tree for ξ relative to S all
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the evaluations for which assign ⊺ to the root, and another tree for ξ relative

to S all the evaluations for which assign � to the root.

Let Trξ be a tree for ξ relative to S. We construct an evaluation for Trξ as

follows:19

1) For each node n of Trξ, if l(n) is true (false) in I, then assign the value

⊺ (�) to n.

2) If there are end nodes labeled with an element of S that were not assigned

a value in step 1, assign them values: ⊺ if the label is made true by SEα,

� otherwise.

3) Starting from those end nodes labeled with an element of S and going

through their predecessors from the bottom up, ensure that the �rst two

bullets of each of SE2�SE5 are satis�ed.

4) For each non-end node that is assigned a value in step 3, if there are

other non-end nodes with the same label, copy the assigned value to

them. Then repeat steps 3 and 4 starting from those nodes.

5) Assign + to all remaining nodes.

(To prevent confusion: In fact no node is assigned ⊺ in step 2. But that will

only have been established at the end of this proof. It does not follow directly

from the induction hypothesis, for being made true by SEα is not the same as

being true in SEα.)

To see that this is an evaluation we �rst need to verify that every node is

assigned exactly one of the three values. As step 5 assigns + to all nodes that

have not already received a truth value, and + is assigned in no other step,

this reduces to showing that no node is assigned both ⊺ and � in the �rst four

steps. The consistency of I implies that this does not happen in step 1, and

step 2 expressly avoids nodes that have been given a value in step 1 and at

most assigns one value to other nodes. For steps 3 and 4 I will just give the

intuitive idea for what should formally be an induction argument concerning

a trans�nite, monotonic sequence of partial tree-evaluations where values are

19The most straightforward approach to constructing such an evaluation will not work. If
we simply assign values to the end nodes according to the rule �⊺ if the label is in the truth
set of SEα/� if the label is in the falsity set/+ otherwise�, and then assign values to the
non-end nodes according to SE2-SE5, the result is not necessarily a tree-evaluation relative
to the given evaluation. For example, let φ and ψ be labels of two end nodes and assume
they are in neither the truth set nor the falsity set. Just above them may be a node labeled
φ ∨ ψ which is in the truth set. According to SEb, the node should be assigned ⊺, while
SE3 dictates that it should instead be given the value +. (As is proved below, either φ or
ψ would eventually be made true, but compositionality is something that holds in the �xed
point, not at every level leading up to it.)



6. Compositional supervaluation 178

added to nodes one at a time (in steps 3 and 4 from the bottom up), and I

will stick to the example of a node n that is labeled with a disjunction φ ∨ ψ
and assigned � at some point in the �process�, leaving the other cases to the

reader. We need to show that this node was not already assigned ⊺ previously

in the process, and we can assume that at this point no other node is assigned

both ⊺ and �.

If n is assigned � in step 3, it has successors labeled φ and ψ that are both

assigned � and therefore not ⊺. Hence, those two sentences are not true in I,
so neither is φ∨ψ, ergo n was not assigned ⊺ in step 1. It also follows directly

from those two nodes not having been assigned ⊺ that n has not been assigned

⊺ in step 3. Since n is a non-end node, it was not assigned any value in step

2. Finally, it can not have been assigned ⊺ in step 4 (even though a step 4

can precede a step 3), for that would imply that the node from which it was

copied had successors labeled φ and ψ at least one of which would have been

assigned ⊺. That is impossible, for had that assignment happened in step 1

or 2, it would also have happened to the successor of n with the same label

(in the latter case because they would then both be end nodes); and had it

happened in step 3, it would have been copied in step 4.

If instead n is assigned � in step 4, then some other node m labeled φ∨ψ was

assigned � in step 3 and then the same reasoning can be used to show that n

was not assigned ⊺ in steps 1, 3 or 4. That it was also not in step 2 is due to

the fact that it follows from m being assigned a value in step 3 that m is a

non-end node and that therefore φ ∨ ψ is not in S.

We can now proceed to show that what is constructed is an evaluation of

Trξ relative to S and SEα by verifying that all the clauses are satis�ed. The

induction hypothesis implies that SEb is satis�ed after step 1. SEc and SE1

are as well. SEa is satis�ed for the following reason: it is obvious that it is after

step 1; in step 2 values are only assigned to nodes with a label that only appear

on other end nodes, save perhaps the root, so the same values are assigned to

all other non-root nodes with the same labels in that step; and step 4 is in

place to ensure that violations of SEa in step 3 are taken care of. Bullets one

and two of SE2�SE5 are satis�ed after step 1, may not be after step 2, but

then are again after step 3. Let m be a node that has a value �copied� to it in

step 4, and assume that m has immediate successors (there is nothing to show

if not). The node from which the value was copied has immediate successors

with the same labels, and there the �rst two bullets of SE2�SE5 were satis�ed,

so they are also satis�ed for m and its immediate successors. Step 2 ensures

that the third bullet of SE5 is vacuously satis�ed. The last bullet of each of

SE2�SE5 is satis�ed by step 5.
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With that, part a) is dealt with. For part b), let Tr′ξ and Tr
′′
ξ be two trees

for ξ relative to S. Let Trξ be their �union� (in the obvious but not literal

meaning of this word). Trξ is also a tree for ξ relative to S, as the properties

of having only �nite branches and only having the root and end nodes labeled

with elements of S are preserved. It is easily seen that, excluding evaluations

which assign + to end-nodes labeled with elements of S, any evaluation of Trξ
can be restricted to an evaluation of Tr′ξ and an evaluation of Tr′′ξ . As it has

been shown that Trξ has such an evaluation, Tr′ξ and Tr
′′
ξ have evaluations

that assign the same value to their roots.

Now assume that ξ is made true among S (the case of falsity is similar). We

show that ξ is intrinsically true. Let π be the function that describes the truth

values that the elements of S are given. Obviously, ξ is not intrinsically false,

for then the constructed tree-evaluation makes the root false, and therefore

ξ would not have been made true. By generalization it follows that Iπ is

consistent. As a closure rule can only produce a truth value for a sentence that

contradicts an intrinsic truth or falsity from other truth values that contradict

intrinsic truths or falsities, it further follows that cl−(I, π) is also consistent.

Under the assumption that ξ is made true among S, what happened in step

2 was that each end node with a label ξ′ from S was given exactly the value

π(ξ′). Ergo, for all non-root nodes, the value assigned is the same as the one

the label has according to cl−(I, π). From the assumption that ξ is made

true, it follows that the root is assigned ⊺; and hence it follows from the fact

that the two �rst bullets of SE2�SE5 are satis�ed that ξ cannot be made

false by one more application of a closure rule to cl−(I, π). Generalizing this

observation to all the elements of S, it follows that cl(I, π) = cl−(I, π), i.e.
that cl(I, π) is consistent. So according to Lemma 6.5, cl(I, π) is an FPSK,

since the constructed evaluation of Trξ is exactly the function eξ mentioned

in that lemma.

Assume for reductio that ξ is false in some FPSK. By the de�nition of I it

follows that there is an FPSK, I∗, which is an extension of I and in which ξ

is false. De�ne a new evaluation of Trξ the same way as above but using I∗

instead of I in step 1. This is an evaluation of Trξ relative to I∗ and hence

according to Lemma 6.1 and the induction hypothesis also relative to SEα,

and it assigns � to the root. This is a contradiction.

It can be concluded that ξ is true in an FPSK and not false in any. Hence, no

sentence that is true or false in Iπ has the opposite truth value in an FPSK.

It follows that no sentence that is true or false in cl(I, π) has the opposite

truth value in an FPSK. Ergo cl(I, π) = I, i.e. ξ is intrinsically true. As ξ was
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arbitrary, I is an extension of SEα+1. From this it �nally follows that ξ is not

made both true and false in SEα+1, period.

Theorem 6.7 (SE is compositional and satis�es the T-schema). For all sen-

tences φ and ψ, formulae ζ with at most the variable x free, and constants c

such that I(c) ∈ S, the following holds:

� ¬φ is true i� φ is false.

� ¬φ is false i� φ is true.

� φ ∨ ψ is true i� φ is true or ψ is true.

� φ ∨ ψ is false i� φ is false and ψ is false.

� ∃xζ is true i� for some constant k, ζ(x/k) is true.

� ∃xζ is false i� for all constants k, ζ(x/k) is false.

� T (c) is true i� I(c) is true.

� T (c) is false i� I(c) is false.

Proof. The right-to-left direction is, in each case, simple: Consider a level

where the right-hand side is satis�ed. Then at the next level, the tree for

the sentence on the left-hand side consisting of just the root and immediate

successors thereof will do the job.

The left-to-right direction can be proved by induction on the smallest level that

decides the sentence on the left-hand side. Such a level is always indexed by a

successor ordinal, so the base and limit cases are trivial. Let α be an ordinal,

and ξ a sentence that is decided at level α + 1 and not at any lower level. Let

S be a set of sentences that ξ was decided among, and let Trξ be a tree that

decided ξ relative to S at level α + 1. Again we construct a tree-evaluation,

this time by taking these steps:

1) For each node n of Trξ, if l(n) is true (false) in SEα, then assign the

value ⊺ (�) to n.

2) Starting from each node assigned a value in step 1 and working down-

wards, ensure that the �rst two bullets of each of SE2�SE5 are satis�ed,

by assigning values to immediate successors that their labels have in SE .
This is possible according to the induction hypothesis.

3) For each node that is assigned a value in step 2, if there are other nodes

with the same label, copy the assigned value to them. Then repeat steps

2 and 3 starting from those nodes.
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4) Assign the value of each element of S according to SE to end nodes

labeled with those sentences.

5) Starting from each node assigned a value in steps 1, 3 and 4 and working

upwards, ensure that the �rst two bullets of SE2�SE5 are satis�ed.

6) For each node that is assigned a value in step 5, if there are other nodes

with the same label, copy the assigned value to them. Then repeat steps

5 and 6 starting from those nodes.

7) Assign + to all remaining nodes.

This is an evaluation of Trξ relative to SEα: SEb, SEc and SE1 are satis�ed

after step 1. That SEa and SE2�SE5 are satis�ed is demonstrated in the same

way as in the previous proof.

If follows that this evaluation assigns the same value to the root as ξ has in

SE . From this it again follows that, if this value is ⊺ (�) and ξ is of the form
¬φ, then the immediate successor of the root (labeled φ) is assigned � (⊺), and
similarly for the other bullets of the theorem; in the last case because step

4 ensures that bullet 3 of SE5 does not come into play. Whenever ⊺ (�) is
assigned to a node, the label of that node is true (false) in SE . This follows

from monotonicity in the case of step 1, from the induction hypothesis in the

case of step 2, from the right-to-left direction of this proof in the case of step

5, and is trivial for the other steps. From this the desired conclusion can be

deduced.

6.10 Comparison and discussion

Leading up to a discussion of the adequacy of this theory, let us undertake

a comparison between the theory presented in this chapter and the various

versions of Kripke's theory.

The basic version can be reformulated using trees as follows: For each sentence,

consider only the tree for that sentence that stops one node below any node

labeled with a sentence of the form T (c) for some constant c. Further, remove

the third bullet from SE5, and let SEa and SEb apply only to end nodes.

Then check only one evaluation of this tree, namely the one that assigns +
to all end nodes to which none of SEb, SEc or SE1 applies. If the root is

assigned a proper truth value by this tree-evaluation, then (and only then) is

the sentence in question given that value.20

20The weak Kleene scheme version (which is as the the strong Kleene scheme version except
that a sentence is unde�ned if any constituent of it is) can be obtained similarly if proper
modi�cations are made to clauses SE3 and SE4. Revision theory can be reformulated using
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The simple Kripkean supervaluation version can be reconstructed using the

same trees and by restricting attention to evaluations that assign proper truth

values to all nodes. The more sophisticated supervaluation versions then cor-

respond to considering even fewer di�erent tree-evaluations.

So all these versions of Kripke's theory can be reformulated using trees, and

hence, in a sense, the framework of this chapter is a generalization of Kripke's.

In fact, they can be reformulated using just a certain class of rather small trees.

With the perspective a�orded by the more general framework, this can be

seen to be an arbitrary and unreasonable restriction. Kripkean supervaluation

only looks forward through one iteration of the truth predicate, so to speak.

The starred versions of Gupta's Challenge show that a supervaluation method

should look forward through an arbitrary number of iterations.

However, there is another sense in which the present theory is not a general-

ization compared to Kripke's work. He does consider the set of all �xed points

for the jump operation in abstraction from methods of �arriving� at these �xed

points. And the theory considered in this chapter is just one of these �xed

points for the strong Kleene jump. (This follows from Theorem 6.7, together

with the fact that atomic sentences with ordinary predicates are assigned truth

values the �right� way.) So in that sense, the merit of the tree framework is

merely that it provides a method for reaching this �xed point �from below�.

But that is philosophically important, as it is a necessary condition for it to

be groundedness-acceptable.

The proof of Theorem 6.6 reveals that the �xed point is intrinsic, i.e. no sen-

tence has a proper truth value in it if it has the opposite truth value in some

other �xed point. However, the �xed point is not the largest intrinsic �xed

point, for the following sentence is �intrinsically true� but unde�ned in the �xed

point: �This sentence is true or the Liar is false�.21 This example tells against

the largest intrinsic �xed point, not the theory of this chapter: This sentence

can consistently be true and cannot consistently be false (because then both

disjuncts should be false and the second cannot be), but that should not be

su�cient cause for actually counting it as true, when we require groundedness

and not just non-arbitrariness. That the sentence can consistently be true and

cannot consistently be false is not the same as there being a grounded fact to

which the sentence can correspond. At any level where that sentence itself and

the Liar are unde�ned there is not. Hence, it should remain unde�ned.

the same trees also with just one evaluation, namely the one in which the end nodes are
assigned values based on the evaluation of the previous level.
21The formalization of the sentence is T (ct) ∨ ¬T (cl) where I(ct) = T (ct) ∨ ¬T (cl) and
I(cl) = ¬T (cl).
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�It is not at all clear how the largest intrinsic �xed point �ts in with the

intuitive picture of truth that we get from Kripke�, Gupta (1982, 37) writes,

and asks rhetorically �By what sort of stage-by-stage process do we reach this

�xed point?� The largest �xed point is indeed not intuitively satisfactory. We

have aimed somewhat lower, and in doing so we have managed to hit the target

through a stage-by-stage process.

So far so good. But we are still aiming and hitting too low. For Gupta has one

more trick up his sleeve; a trick that cannot be dealt with using the approach

of this chapter alone. Replace A3 and A5 with these sentences:

A3�: �A3� is true� is true

A5�: �A3� is not true� is true

Under the present theory these sentences become unde�ned, and as a con-

sequence B4 does as well. But the same old reason for B4 being intuitively

true seems to have undiminished power: A3� and A5� are intuitively contra-

dictory, so the fact that they are not both true is independent of their speci�c

truth values.

What is required to make the formal theory match the intuition is that the

sentence

A(cTTA3�) ∧ T (cTTA3�) ∧A(cT¬TA3�) ∧ T (cT¬TA3�) → =(cTTA3� , cT¬TA3�)

(with obvious notation) is made true even though two of the conjuncts of the

antecedent are unde�ned, the other two true, and the consequent false. And

that means that compositionality must be given up. For we cannot allow

that all sentences of this form with two of the conjuncts of the antecedent

unde�ned, the other two true, and the consequent false is made true. Consider

for example the sentence

W (cs) ∧ T (c) ∧W (cs) ∧ T (c) → B(cs),

whereW (cs) is the true sentence �Snow is sometimes white�, B(cs) is the false
sentence �Snow is always black�, and c is a constant denoting the conditional

itself, so that, at least initially, T (c) is unde�ned. If we allow the conditional to

be made true, then T (c) would also become true, and therefore the antecedent

would too. That would leave us with a true conditional with a true antecedent

and a false consequent.

Having accepted that Gupta's Challenge in its �rst version was a good reason

for modifying Kripke's theory, we have to give up on compositionality and

come up with an even more extensive modi�cation. That is the agenda for the

�nal chapter.
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That the theory of this chapter proved ultimately to be a failure does not put

us back at square one. We have made some progress and gained some insights

that can be used in the next attempt. First, the idea of using all available

information at each stage while not using �information� that turns out to be

false when the �nal evaluation is reached. And second, the idea about doing

supervaluation that is not limited to one iteration of the truth predicate. On

the other hand we will get rid of compositionality and also the rather ad hoc

use of the strong rule for truth in some contexts and the weak rule in other

contexts.

We will also have to undo a problem we have created for ourselves. We need

ultimately to get rid of the reliance on classical ordinals and be able to interpret

our formal theory in accordance with the notion of truth-as-potentiality. We

could have done that with the basic version of Kripke's theory, but with the

theory of this chapter that option seems to have been lost. Here is why: There

is an alternative way to formulate the basic version using trees, instead of the

one mentioned in the beginning of this section. The alternative is to allow

a �full tree� to have branches containing the same sentence multiple times

(i.e. remove clause 1 in the de�nition of �full tree� and hence also the word

�otherwise� in clause 2); equip the trees (still only having �nite branches)

for a given sentence with only the one evaluation described above, i.e. the

evaluation resulting from assigning + to all end nodes that are not labeled

with an atomic sentence with an ordinary predicate or the truth predicate

applied to a constant denoting a non-sentence; and count a sentence as true

(false) i� some tree for it assigns ⊺ (�) to the root. This would result in the

�xed point being already reached at level 1.22 In other words, there is no need

for levels at all. And we have already seen in chapter 4 how what is true or

false according to a classical theory and depends on other truths and falsities

in a dependency structure that has the form of a tree with �nite branches can

be vindicated as TAP or FAP (a sentence in a given node that is, e.g., true

according to the basic version, is TAP if it is formulated by virtue of the TAP

and FAP values that the sentences of the immediate successors would have

if they were formulated). But where Kripke's basic theory is not essentially

dependent on ordinals, it would seem that the present theory is. So it is not

clear that what has been de�ned as true and false in this theory, formulated

using classical set theory, makes sense for a non-veri�cationist constructivist.

22This was demonstrated in (Davis 1979) (although there are some inessential technical
di�erences); see also (Hazen 1981).



Chapter 7

Supervaluation on posets

7.1 Introduction and examples

If we give up on compositionality, but insist that truths have to be grounded

and that a disjunction can only be true if one of its disjuncts is, what semantics

does that leave us with for disjunctions? The case of truth does not seem to

leave much wiggle room, for if one of the disjuncts can be made true, then

surely we have the ground for making the disjunction itself true. Thus, a

disjunction is true if and only if at least one of the disjuncts is true. However,

for falsity there are, I think, options.

One prominent idea about falsity � indeed the idea that the classical logician

believes completely determines it � is that falsity, to speak metaphorically,

should �ll up the space left by truth. For reasons that have already been

outlined and will be discussed in more detail in Section 7.8, I don't think

that is compatible with a comprehensive theory of classes based on the idea

of grounding. However, it does seem to be so compatible that falsity takes up

more space than in Strong Kleene. The classical logician would have it that a

sentence is false if it is not true. We could allow that a sentence is false if it

can be grounded that it is not true.

In the Strong Kleene truth table for disjunction there is just one entry occupied

by falsity and three that are taken by the value of unde�ned. Together they

cover the area characterized by it being the case for each disjunct that it is

either false or unde�ned. The idea to be pursued here is that we let the

disjunction be false if it can be grounded that the situation for the disjuncts

must be somewhere in that area. That is, if it can be established through

supervaluation that each disjunct must be either false or unde�ned, perhaps

without anything more speci�c than that being clear, then the disjunction is

declared false. Falsity for a disjunction will be guaranteed absence of truth.

185
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¬φ φ ∨ ψ ψ
T (cφ)⊺ � +

φ
⊺ �

φ
⊺ ⊺ ⊺ ⊺

φ
⊺ ⊺

� ⊺ � ⊺ � +� � �
+ ⊺+ + ⊺ +� +� + +�

φ ∧ ψ ψ
φ→ ψ

ψ
⊺ � + ⊺ � +

φ
⊺ ⊺ � +�

φ
⊺ ⊺ � +�

� � � � � ⊺ ⊺ ⊺
+ +� � +� + ⊺ ⊺+ ⊺+

Figure 7.1

That way, it might be the case that a disjunction is made false with one disjunct

false and the other disjunct unde�ned, because it was possible to establish that

the second disjunct could under no circumstances end up true higher up in the

hierarchy, while another disjunction is left unde�ned even though it also has

one disjunct false and the other disjunct unde�ned, because the evaluations

quanti�ed over included some that made the second disjunct true. This gives us

a non-compositional semantics for the disjunction as illustrated in Figure 7.1.

Figure 7.1 also contains similar truth tables for the other connectives and the

truth predicate. The idea is the same: A negation is false if the negated

sentence is true, false if it can be grounded that it is not true, and unde�ned

otherwise. A conjunction is true if both conjuncts are true, false if it can be

grounded that that is not the case, and unde�ned otherwise. Slightly more

complicated and of particular interest is the conditional. A conditional is true

if it can be grounded that either the consequent is true or the antecedent is

not. So modus ponens is validated. And we stay true to the idea behind the

classical semantics for the conditional that asserting a conditional only implies

a commitment to the truth of the consequent if the antecedent is true, and

otherwise no commitment is made. A conditional is false if it can be grounded

that the antecedent is true and the consequent is not, and unde�ned otherwise.

Similarly, a sentence T (cφ), saying that φ is true, is true if φ is true, false if

it can be grounded that φ is not true, and unde�ned otherwise (a non-ad hoc

way of deciding when to use the strong rule for truth and when the weak).

The existential and universal quanti�ers work analogously to disjunction and

conjunction, respectively.

For a very simple example of the intended use of these non-compositional

truth tables, which are tentative and will be revised in Section 7.3, consider a

sentence of the form φ ∧ ¬φ and this tree for it:
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φ ∧ ¬φ

���������������

<<<<<<<

¬φ

φ φ

As in the previous chapter, we want to consider all the three possibilities of

truth, falsity and unde�nedness for φ (assuming that φ is neither an atomic

sentence with an ordinary predicate nor an atomic sentence with the truth

predicate and a constant not denoting a sentence). We do that by starting out

with an evaluation set for the part of the tree just consisting of the two end

nodes. It contains three evaluations, one making φ true, one making it false

and one making it unde�ned. This can be represented like this:

φ ⊺ � +

Next, we extend these evaluations to also cover ¬φ. First it is considered

whether it can be grounded in the available information that the negated

sentence is not true, as that is the truth criterion we adopted for negations. In

that case we would extend all the evaluations with truth for ¬φ. But obviously
it cannot: φ being true is one of the three possibilities. So instead we extend

each of the three evaluations individually. According to the table for negation,

the evaluation that makes φ true must be extended with the assignment of

falsity to ¬φ, and vice versa for the second evaluation. The third evaluation

has φ unde�ned and here we must consider two di�erent ways to extend it.

When the negated sentence is unde�ned, it may be possible to ground that

the negated sentence is not true (with some larger tree that has ¬φ at the root

and where the kind of supervaluation exemplied below happens) or it may not.

Therefore, we make two �copies� of the third evaluation and extend one with

¬φ being true and the other with it being unde�ned:

¬φ � ⊺ ⊺ +
φ ⊺ � +

Of the four possibilities we then have for the combinations of truth values for

the two conjuncts of φ ∧ ¬φ, none make both true. Thereby it is grounded

that the truth criterion for this sentence is not satis�ed � even though we

are ignorant about the actual truth values of the constituents � and we can

supervaluate it as false:



7. Supervaluation on posets 188

φ ∧ ¬φ �
¬φ � ⊺ ⊺ +
φ ⊺ � +

It is intuitively reasonable to have this sentence false no matter whether φ is

true, false or unde�ned, for it is guaranteed that not both conjuncts are true.

We can ground the non-truth of this sentence in facts about it logical form

alone; no facts about the actual truth values of its constituents are needed.

Already this extremely simple example should o�er a glimpse of both how

to deal with Gupta's Challenge and how to reach our ultimate goal, getting

certain universally quanti�ed sentences about all classes to come out true, but

we will return to that.

The use of the non-compositional truth-tables is one of two changes I will

make to the system of Chapter 6. The second has to do with getting rid of

the reliance on trans�nite ordinals. The formulation of the theory in terms of

trees suggests a solution: place the trees on top of each other. If a sentence φ

is made true at level 1 by a tree Trφ and another sentence ψ is then made false

at level 2 by a tree Trψ that has an end-node labeled φ, then sticking Trφ onto

Trψ at the φ node would seem to give a tree that should be capable of making

ψ false in one blow. (The idea is encouraging because we have already seen in

Chapter 4 that there is a connection between being tree-like in structure and

being in line with the doctrine of TIC and TAP. That we will also return to.)

To do so, we must rede�ne the notion of the �full tree� for a sentence by re-

moving the restriction that prevents the same sentence from occurring multiple

times in the same branch, and that brings with it some technical problems.

For, on the one hand, if we make that change and retain the rule that all

nodes with the same label must be assigned the same value, we no longer have

a theory of grounded truth, but rather a theory that, as I formulated it in the

previous chapter, is searching for consistent evaluations. Consider for example

this tree for the Liar:

¬T (cl)

T (cl)

¬T (cl)

T (cl)

¬T (cl)
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There cannot be an evaluation of this tree that makes the end-node true, be-

cause then the node in the middle would have to be false according to the

compositional rules, but true according to the rule of same label, same value.

On the other hand, if we repeal this rule, then we get too many evaluations.

Consider again the tree in Figure 6.1 on page 162: it would have nine evalua-

tions instead of three, one of which would make the left-most node labeled B4

true and the right-most false, resulting in the root being false in that evalua-

tion.

It would seem that we need to uphold the rule for �horizontal� sets of nodes

with the same label, i.e. sets of nodes that are not in the same branch, but

weaken it so it does not apply �vertically� to nodes in the same branch. The

justi�cation would be that upholding the rule �horizontally� just is to allow

ourselves to make multiple inferences from the same assumption (e.g. inferring

that A3 is true and that A5 is false from the assumption that B4 is true),

while upholding the rule �vertically� is to search for a consistent evaluation

and be ready to accept it merely because it is the only consistent evaluation,

not because its truth values are grounded. But as stated, that is too simplistic:

if there are two nodes n1 and n2 in the same branch plus a node n3 not in that

branch, all with the same label, then the restriction that n1 and n3 should

have the same value and the restriction that n2 and n3 should have the same

value would imply that n1 and n2 should too. A solution is to consider all the

di�erent ways the restriction could be imposed on �horizontal� sets and then

quantify over them. So in the example we would check separately whether

imposing the restriction on n1 and n3 would lead to a truth value for the root

sentence and whether imposing the restriction on n2 and n3 would. If either

does, we accept the truth value that results for that sentence.

The most elegant technical implementation of this idea is to identify the nodes

that must have the same value and thereby turn the trees into partially ordered

sets (posets). Thus, in the resulting posets there would be no need to impose

any restriction about di�erent nodes needing to have the same value. The tree

for φ ∧ ¬φ above, for example, could result in this poset, for which the above

construction of an evaluation set still works:

φ ∧ ¬φ

���������������

<<<<<<<

¬φ

ppppppppppppp

φ
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The plan now is to �rst work our way through a number of examples to get a

feel for the theory with as little technicality as possible, using examples where

some involve a truth predicate, and then we will formulate the theory precisely

but for the language of class theory introduced earlier, for that is our ultimate

interest.

Beginning with the simple examples, we �rst satisfy ourselves that, unlike

with Kripke's approach, the necessary falsehood of φ ∧ ¬φ is not linked with

the necessary truth of φ ∨ ¬φ. Here is a poset for the latter:

φ ∨ ¬φ

���������������

<<<<<<<

¬φ

ppppppppppppp

φ

The evaluation set for the bottom-most two nodes is as in the �rst example:

¬φ � ⊺ ⊺ +
φ ⊺ � +

However, unlike the �rst example, there is no unequivocal conclusion about

the truth value of φ∨¬φ to be drawn; some evaluations, namely the �rst three,

support making it true, but the last does not according to the truth table for

disjunction. The evaluation set for the entire poset looks like this:

φ ∨ ¬φ ⊺ ⊺ ⊺ � +
¬φ � ⊺ ⊺ +
φ ⊺ � +

This means that φ ∨ ¬φ will only be made true if there is a larger poset for

that sentence which makes it true, because it also makes either φ or ¬φ true.1

A major component of the expressibility weakness of Kripke's theory is that

conditionals with unde�ned antecedents and consequents are themselves unde-

�ned, even when the antecedent intuitively implies the consequent. Our third

example illustrates how that problem is dealt with here: a sentence of the form

φ ∨ ψ → ψ ∨ φ is true in virtue of that form alone. Here is a tree for it:

1When we decided on the semantics for the connectives etc., we �lled out more of the space
left between truth and falsity by the Strong Kleene semantics with falsity than we �lled out
with truth. That is what accounts for this loss of duality.
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φ ∨ ψ → ψ ∨ φ

zzzzzzzz

DDDDDDDD

φ ∨ ψ

������

222222 ψ ∨ φ

������

222222

φ ψ ψ φ

The two nodes labeled φ can be identi�ed, and so can the two nodes labeled

ψ, resulting in this poset:

φ ∨ ψ → ψ ∨ φ

||||||||

BBBBBBBB

φ ∨ ψ

PPPPPPPPPPPPPP ψ ∨ φ

nnnnnnnnnnnnnn

φ ψ

Its evaluation set, displayed in one of the two tables in Figure 7.2, gets quite

large, but all the combinations of truth values for φ ∨ ψ and ψ ∨ φ are such

that, if the antecedent is true, then the consequent is true as well, so that the

conditional is supervaluated as true.

The next example serves two purposes. First, it shows that certain semantic

facts about the Liar can be expressed in the object language, a possibility that

is also not present in Kripke's theory. The example is of a sentence that says

that the Liar implies a contradiction: ¬T (cl) → (T (cl)∧¬T (cl)). Second, this
example illustrates the kind of situation where nodes of a tree can be identi�ed

in di�erent ways, resulting in di�erent posets. Here is a tree for the sentence:

¬T (cl) → (T (cl) ∧ ¬T (cl))

wwwwwwwww

GGGGGGGGG

¬T (cl) T (cl) ∧ ¬T (cl)

wwwwwwwww

GGGGGGGGG

T (cl) T (cl) ¬T (cl)

¬T (cl) T (cl)

Deleting the end-node labeled ¬T (cl), identifying the remaining nodes with

that label and identifying the nodes labeled T (cl) results in this poset:
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¬T (cl) → (T (cl) ∧ ¬T (cl))

FFFFFFFF

����������������

T (cl) ∧ ¬T (cl)

llllllllllllll

����������������

¬T (cl)

FFFFFFFF

T (cl)

Its evaluation set is inconclusive:

¬T (cl) → (T (cl) ∧ ¬T (cl)) ⊺ � � � + ⊺ + ⊺ +
T (cl) ∧ ¬T (cl) � � � + � +
¬T (cl) � ⊺ ⊺ +
T (cl) ⊺ � +

But if, instead, we delete the two end-nodes labeled T (cl) and identify all the

nodes labeled ¬T (cl), this poset results:

¬T (cl) → (T (cl) ∧ ¬T (cl))

FFFFFFFF

������������������������

T (cl) ∧ ¬T (cl)

xxxxxxxxxxxxxxxxxxxxxx

T (cl)

llllllllllllllll

¬T (cl)

And with that poset, where the value of ¬T (cl) a�ects the value of T (cl)
instead of the other way around, the sentence can be made true:

¬T (cl) → (T (cl) ∧ ¬T (cl)) ⊺
T (cl) ∧ ¬T (cl) ⊺ � � � +
T (cl) ⊺ � � +
¬T (cl) ⊺ � +

The last poset tells us that in any possible evaluation, if the antecedent is

true, so is the consequent. The �rst poset did not contradict this. It simply

did not provide us with enough information to determine it. Generalizing from

this example, we have the justi�cation for quantifying over posets and de�ning

a sentence as true (false) if some poset declares it true (false), namely that
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posets cannot contradict each other, but some posets deliver more information

than other posets (see, however, Section 7.6).

The last two examples of this section are the most interesting: Gupta's Chal-

lenge and the T-schema. Consider again the �rst version of Gupta's Challenge

described in Chapter 6. To avoid inessential details, we just show why the

sentence T (cA3) ∧ T (cA5) is false. It should be clear why that is practically

the same as showing that (B4) is true. A poset for T (cA3) ∧ T (cA5) looks as
follows, and its evaluation set is given as the second table in Figure 7.2:

T (cA3) ∧ T (cA5)

ssssssssss

KKKKKKKKKK

T (cA3) T (cA5)

(A3)

ssssssssssss
(A5)

KKKKKKKKKKKK

. . . B(cB4) → T (cB4)

KKKKKKKKKK

99999999999999999
B(cB4) ∧ ¬T (cB4)

ssssssssss
. . .

B(cB4) ¬T (cB4)

ssssssssss

T (cB4)

(B4)

By virtue of larger posets that have (a poset almost identical to) this poset as

a sub-poset, we again get (A3) true, (A5) false and (B4) true. In the present

theory, unlike in the unsuccessful theory of the previous chapter, it does not

matter whether or not the bottom-most sentence is the same as the sentence

that appears at the root of one of those larger posets. And that is what makes

the solution stable towards the ways that the Challenge can be varied (recall

the A3� example from Section 6.10 where A3� does not reappear higher up in

the tree). In all variants, A3 or its analogue says, in e�ect, the opposite of what

A5 or its analogue says about some given sentence φ, and that is intuitively

enough to make B4 true independently of whether B4 is identical to φ and

how the two sentences otherwise relate to each other. It is also enough in the

present theory. That means that we have �nally succeeded in tackling the

problem at its root. In particular, all the four versions discussed in Chapter 6
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get the intuitively correct truth values, as the reader can verify for him- or

herself.

As explained in Section 5.2, Kripke's theory only validates a weak version of

the T-schema. To repeat, in his theory T (c) is true if and only if I(c) is, but
∀x(P (x) → T (x)) where I(P ) is the set of all sentences of the form T (cφ) ↔ φ,

cφ designating φ, is unde�ned. In the theory of this chapter it is true. Each

sentence T (cφ) ↔ φ has a tree of this form:

φ→ T (cφ) ∧ T (cφ) → φ

uuuuuuuuu

IIIIIIIII

φ→ T (cφ)

��������������

7777777
T (cφ) → φ

�������

++++++++++++++

T (cφ) T (cφ)

φ φ φ φ

By making the proper identi�cations, it can be turned into a poset that looks

like this:

φ→ T (cφ) ∧ T (cφ) → φ

xxxxxxxx

FFFFFFFF

φ→ T (cφ)

4444444444444444

FFFFFFFF
T (cφ) → φ

xxxxxxxx



















T (cφ)

φ

Its evaluation set, making T (cφ) ↔ φ true, grounded not in the speci�c truth

value of φ but in the fact that by necessity the left-hand side is true if and

only if the right-hand side is true, is as follows:

φ→ T (cφ) ∧ T (cφ) → φ ⊺
φ→ T (cφ) ⊺
T (cφ) → φ ⊺
T (cφ) ⊺ � � +
φ ⊺ � +

The sentence ∀x(P (x) → T (x)) itself has a poset which can be outlined as

follows, where c represents those constants that denote a sentence of the form

T (cφ) ↔ φ, and k represents all other constants:
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∀x(P (x) → T (x))

gggggggggggggggggggggggg

ppppppppppp

NNNNNNNNNNN

WWWWWWWWWWWWWWWWWWWWWWWW

. . . P (c) → T (c)

�������

>>>>>>>
. . . P (k) → T (k)

�������

>>>>>>>
. . .

P (c) T (c) P (k) T (k)

φ→ T (cφ) ∧ T (cφ) → φ

�������

=======

φ→ T (cφ)

=======

...............
T (cφ) → φ

�������

���������������

T (cφ)

φ

The evaluation set is here illustrated by pretending that there is only one of

each kind of constant and by leaving out the part concerned with the sub-poset

already treated:

∀x(P (x) → T (x)) ⊺
P (c) → T (c) ⊺
P (k) → T (k) ⊺
P (c) ⊺
T (c) ⊺
P (k) �
T (k) ⊺ � +
φ→ T (cφ) ∧ T (cφ) → φ ⊺

Here we have a general law about the semantics expressed as a true sentence

in the object language itself.

7.2 Considering all possibilities

As discussed in Section 6.2, we are aiming for a kind of supervaluation where

�all possibilities are considered�. Let us spell out how the present theory does

that, partially because it is intrinsically important, partially with the aim of

motivating a not yet explained detail of the theory.

Consider again the �rst example in this chapter, the one concerning φ ∧ ¬φ.
This sentence can be made false by the creating subject at some point in

time by his construction of the poset considered and its evaluation set (more
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detail on this in Section 7.7 below). When he does that, the idea is that no

matter what else he might go on to do in terms of making sentences true and

false, there will at any given time be an evaluation in the evaluation set that

represents the current state. For instance, the subject may have made φ ∧ ¬φ
false at a time where both φ and ¬φ are unde�ned. In that case it is the right-

most of the four evaluations (as displayed in the table) that represents the state

at that time. Then later he might go on to make φ true and, using that, make

¬φ false. Then the right-most evaluation no longer represents the current state,

but then another in the set does, namely the left-most one.2 Alternatively he

may leave φ unde�ned, but make ¬φ true by another supervaluation; that

possibility is anticipated by the third of the four evaluations in the set.

Similarly with T (cφ) ↔ φ: φ may be unde�ned, in which case T (cφ) is either
unde�ned as well, or � if it has been grounded that φ is not true � false.

Alternatively φ may be true, and then T (cφ) is either true or the subject is in
a position to make it true in a single step. Or φ can be false, in which case

it similarly holds that T (cφ) either is false or �just about to be�. Those are

all the possibilities for the combination of truth values for φ and T (cφ) and

when the subject has realized that, he can make T (cφ) ↔ φ true grounded in

this �intensional� fact of the necessity of the sentence's truth condition being

satis�ed by whatever the truth values of its constituents may end up being.

To really take all possibilities into account, the theory has to be formulated

carefully. Consider the sentence T (k) ∧ ¬T (c) where I(k) = ¬T (c) and I(c) =
T (k)∧¬T (c). A poset for this sentence is displayed in Figure 7.3 (as there are

several nodes labeled with the same sentences, they are numbered for easier

reference) together with the evaluation set as it would be if values were assigned

taking only the values of the immediate successors into account.

The evaluation set for nodes 1 to 5 is as it should be, but at node 6 things

go wrong. It is supervaluated as false, based on the fact that there is no

evaluation where the two nodes immediately below node 6 are both assigned ⊺.
As a consequence, T (c) is made false, ¬T (c) true, T (k) true and T (k)∧¬T (c)
true. That is, an inconsistency arises.

The problem is not that the evaluation set fails to include all possibilities; what

happens in lines 8 to 12 of the table is included as the left-most possibility in

lines 1 to 5. The problem is that when T (k)∧¬T (c) is supervaluated as false, it
is not the entire content of that left-most possibility that is taken into account.

2If the subject makes φ true but then happens to refrain from making ¬φ false (perhaps
because he gets preoccupied with other business), then there is no evaluation in the set that
�ts the current situation. But then there is an evaluation that would �t, if the subject just
worked his way up through the poset. The notion of an evaluation in the evaluation set
representing the current situation has to be thus liberalized.
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¬T (c)12

T (c)11

T (k) ∧ ¬T (c)10

llllllllllll
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T (k)9

DDDDDDD

¬T (c)8

T (c)7

T (k) ∧ ¬T (c)6

�����������������������������

DDDDDDD

¬T (c)5

T (c)4

T (k) ∧ ¬T (c)3

llllllllllll

��������������

T (k)2

DDDDDDD

¬T (c)1

¬T (c)12 �
T (c)11 ⊺
T (k) ∧ ¬T (c)10 ⊺
T (k)9 ⊺
¬T (c)8 ⊺
T (c)7 �
T (k) ∧ ¬T (c)6 �
¬T (c)5 � ⊺ ⊺ ⊺ ⊺ ⊺ +
T (c)4 ⊺ � � � � +
T (k) ∧ ¬T (c)3 ⊺ � � � +
T (k)2 ⊺ � � +
¬T (c)1 ⊺ � +

Figure 7.3
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The reason that this sentence should not be supervaluated as false is that the

possibility that both T (k) and ¬T (c) are true should be taken into account.

After all, one should be true if and only if the other is already according to

the weak rule for truth! And the left-most evaluation describes exactly that

situation in lines 1 and 2. But if values are assigned taking only immediate

successor nodes into account, only line 5, where ¬T (c) is false, is considered in

the supervaluation. This example shows that we should �look further down�

when the supervaluation is done. When values are to be assigned to a node

labeled φ, we should for each constituent ψ of φ consider the values assigned to

successors of the root labeled ψ down to nodes where the value is �determined�,

i.e. nodes to which all evaluations in the evaluation set assign the same value

(we do not have to consider all the possibilities below a supervaluated node,

for the supervaluation may eliminate some of them).3

The reader can easily verify that the amendment of this section does not a�ect

any of the examples discussed in the previous section.

7.3 ...but not too many

Just as we should ensure that all possibilities are taken into account, we should

strive to avoid quantifying over non-genuine possibilities, as that leads to sen-

tences being assigned the value of unde�ned unnecessarily. And so far we have.

I stated above that even when φ turns out to be unde�ned, it is reasonable to

make ¬φ true if it can be grounded that φ must be either false or unde�ned.

On that background we tentatively decided that whenever + is considered as a

possible value for φ, both + and ⊺ must be considered possible values for ¬φ,
the latter because of the possibility that such grounding can take place and

the former because of the possibility that it cannot. However, as a matter of

fact it cannot be the case both that φ is unde�ned and that it can be grounded

that φ is not true.

The reason is as follows. Let a poset for ¬φ be given. If it is grounded that φ

is not true, then φ is assigned either + or � in all evaluations in the evaluation

set for the poset. If φ is a disjunction, it can be seen from Figure 7.1 that in

that case the evaluation set would not contain both evaluations with + and

evaluations with �. Rather, φ would have been supervaluated as false. So in

that case the claim follows. The same holds if φ is a conjunction, a conditional,

a quanti�ed sentence or an atomic sentence with the truth predicate. If φ is
3Stopping at nodes that are determined ensures that the right-to-left direction of Theo-
rem 6.7 in Chapter 6 still holds. For instance, for all sentences φ and ψ, if φ is true then
so is φ ∨ ψ. For if φ is true, then there is a poset Po that makes it true, and then a poset
making φ ∨ ψ true can be obtained simply by taking the tree consisting of a root labeled
φ ∨ ψ and its two successors and sticking Po onto the node labeled φ.
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¬φ φ ∨ ψ ψ
T (cφ)⊺ � +

φ
⊺ �

φ
⊺ ⊺ ⊺ ⊺

φ
⊺ ⊺

� ⊺ � ⊺ � +� � �
+ + + ⊺ +� +� + +

φ ∧ ψ ψ
φ→ ψ

ψ
⊺ � + ⊺ � +

φ
⊺ ⊺ � +�

φ
⊺ ⊺ � +�

� � � � � ⊺ ⊺ ⊺
+ +� � +� + ⊺ ⊺+ ⊺+

Figure 7.4

itself a negation, then it can be seen from the �gure that it is simply not

possible that the evaluation set assigns + to φ in some evaluations without

also assigning ⊺ in some.

For this reason it is super�uous to consider the possibility that ¬φ is true when

φ is unde�ned. Thus, in the very �rst example in this chapter, the one about

sentences of the form φ ∧ ¬φ, we quanti�ed over one possibility too many. Its

evaluation set should instead simply look like this:

φ ∧ ¬φ �
¬φ � ⊺ +
φ ⊺ � +

Of course, that makes no di�erence for the truth value of this particular sen-

tence, but it does for other sentences.

Exactly the same holds for the other type of sentence with just one constituent,

atomic sentences with the truth predicate: it cannot be the case that T (cφ)
can be supervaluated as false when φ is unde�ned, and for the same reason.4

We can thus update and simplify our truth values as shown in Figure 7.4.

This point about too many combinations being considered also applies to sen-

tences with more than one constituent, when only one of those constituents

has a �variable� truth value. Consider the case of a disjunction φ ∨ ψ and a

poset for it for which the node labeled φ immediately below the root is assigned

the value � by all evaluations in the evaluation set. (If it is assigned ⊺ by all

evaluations, then φ ∨ ψ is made true as well, and it cannot be the case that

it is assigned + by all evaluations, so � by all evaluations is the only case to

4We are thus reverting to the �weak rule� for truth, as it was called in Chapter 6, after
having considered using the �strong rule� in some situations in Sections 6.5-6.10 and in a
di�erent set of situations in Sections 7.1-7.2.
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consider.) It cannot be the case that ψ is assigned � or + by all evaluations so

that φ ∨ ψ can be supervaluated as false, without it being the case that ψ is

determinately false. The reason is again the same as above.

The conclusion is that when either φ or ψ has a determinate value in the

evaluation set (i.e. all evaluations assign the same value to the node so labeled

directly below the node labeled φ ∨ ψ), the extension of the evaluation set

should be done simply using Strong Kleene, instead of splitting evaluations

in further di�erent possibilities. Further, the same holds, as the reader can

verify for him- or herself, and we draw the same conclusion, in the case of

conjunctions, conditionals and quanti�ed sentences.

Another thing the reader can easily verify is that, even though the evaluation

sets are to be reduced in all the examples in Section 7.1, the conclusions about

the truth value of the root sentence are in all cases una�ected. An example

where it does make a di�erence can be found below in Section 7.5.5

7.4 The formal theory

That concludes the motivational remarks and we can now give a formulation

of the theory in classical set theory.

The language is the language of class theory introduced in Section 5.3, except

that � in addition to negation, disjunction and the existential quanti�er �

conjunction, the conditional and the universal quanti�cation are also taken as

primitive.

As already indicated we liberalize and simplify the de�nition of full tree: given

a sentence ξ, the full tree for ξ is the tree such that the root is labeled

with ξ and for every node n, n has one immediate successor for each of the

constituents of l(n), and these successors are labeled with these constituents.

A tree for ξ is again de�ned as any trimmed tree of the full tree for ξ in

which all the branches are �nite.

Our non-standard de�nition of a poset is as a triple Po = (N,≺, l) where N

is any set, ≺ is a relation on N such that the transitive closure thereof, <, is
a partial order on N satisfying the requirements that for every element of N ,

any linearly ordered set of predecessors of this element is �nite and there is

an element of N called the root that is a predecessor of every other element

of N , and l is a function from N to S. When a ≺ b, we say that a is an

immediate predecessor of b and that b is an immediate successor of a,

5A natural question to ask is why we should admit more than a single possibility as genuine.
We end up with just one evaluation of all the sentences in the language, so it might seem that
any other combination is not a real possibility. See footnote 11 on page 218 for an answer.
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while predecessor (as already used in the previous sentence) and successor

simpliciter is de�ned similarly from <. The terms �node�, �end node� and

�label� mean the same thing as in the previous chapter, as does the notation

�nφ�. The remark about identi�cation of isomorphic trees also carries over. A

sub-poset generated by a node can be de�ned in analogy to sub-tree of

a tree.

For trees, the relation ≺ can be de�ned from <: n ≺m if n <m and there is no

k such that n < k <m.6

Given a poset Po and a sentence ξ, Po is a poset for ξ if there is a tree for ξ,

Tr, and a surjective homomorphism h ∶ Tr → Po that preserves labels, ≺ and

< and identi�es identically labeled immediate successors of identi�ed nodes.

Spelled out, h has to satisfy these conditions for all nodes n, m, n′ and m′

of Tr:

� l(h(n)) = l(n)

� If n ≺m then h(n) ≺ h(m)

� If n <m then h(n) < h(m)

� If h(n) = h(m), n ≺ n′, m ≺m′ and l(n′) = l(m′) then h(n′) = h(m′)

The properties of < ensure that only incomparable nodes (nodes n and m such

that neither n < m nor m < n) can be identi�ed by a homomorphism, and

identi�cations cannot �cross over�. The e�ect of the last bullet point is that

whenever two nodes are identi�ed, the sub-trees they generate must also be

identi�ed.

We can now give the central de�nition, that of the evaluation set of a given

poset for some sentence ξ (given a model), E. The de�nition is given by

recursion, the base case of which is that the poset consists of just one node n

with l(n) = ξ. In that case, E is de�ned as follows:

� If ξ is of the form P (C) then E is the singleton of the function that has

{n} as domain and takes n to ⊺ if I(C) ∈ I(P ) and to � if I(C) ∉ I(P ).

� If ξ is of one the forms in E1, E2 or E3 in Section 5.3, then E is the

singleton of a function that has {n} as domain and takes n to either ⊺
or � as indicated in those clauses.

6For posets, the relation ≺ cannot be recovered from <, and that is why we non-standardly
take the former as primitive. If for instance b is a successor of a and c is a successor of b,
we need to be able to distinguish the case where c is also an immediate successor of a from
the case where it isn't.
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� If ξ is of the form t ∈ {n∣φ} where φ is a formula and t is a closed term

but not a natural term, then E is the singleton of the function that has

{n} as domain and takes n to �.

� Otherwise, E is the set consisting of three functions, each with {n} as

domain and taking n to ⊺, � and +, respectively.

The recursion case is a poset Po with more than one node. For each immediate

successor of the root n, the evaluation set for the sub-poset generated by that

immediate successor is de�ned. For each of those immediate successors m, let

Fm be the evaluation set for the associated sub-poset. These are �combined�

to form F , a set of functions on the domain consisting of the nodes of Po

except n, as follows. Let M be the set of immediate successors of n. For each

family {fm}m∈M consisting of exactly one evaluation fm ∈ Fm for each m ∈M ,

{fm}m∈M is in agreement if for all nodes m′ ∈ Po ∖ {n} there exists a truth

value v such that for all m ∈ M , if fm(m′) is de�ned, then fm(m′) = v. F is

the set consisting of ⋃m∈M fm for each {fm}m∈M that is in agreement. Such a

set of functions is called a root-less evaluation set.

That was a complicated way of expressing something that is really quite simple,

but that is sometimes the price of precision. Let's therefore digest it with an

example before completing the de�nition. Let Po be the poset for T (cφ) ↔ φ

displayed in Section 7.1. There are two immediate successors of the root and

they generate two sub-posets, namely

φ→ T (cφ)

4444444444444444

FFFFFFFF
T (cφ) → φ

xxxxxxxx



















T (cφ) T (cφ)

φ φ

and they each have an evaluation set with three evaluations (not four as they

would according to the rules prior to Section 7.3):

φ→ T (cφ) ⊺ T (cφ) → φ ⊺
T (cφ) ⊺ � + T (cφ) ⊺ � +
φ ⊺ � + φ ⊺ � +

The left-most evaluation in the evaluation set for φ→ T (cφ) and the left-most

evaluation in the evaluation set for T (cφ) → φ agree on the value of all the

nodes they have in common. That is, the set of those two evaluations is in
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agreement. So they can be combined into a function de�ned on all the nodes

of the poset for T (cφ) ↔ φ except the root, namely one that sends each of

those nodes to ⊺. In the same way there are two other combinations of one

evaluation from each set that agree and can be combined, while there are six

combinations, such as the left-most from the evaluation set for φ→ T (cφ) and
the right-most evaluation in the evaluation set for T (cφ) → φ, that disagree

on at least one common node and therefore cannot be combined. The three

successful combinations can then be extended with a value for the root; that

is speci�ed by the rest of the de�nition below.

We need to squeeze in two auxiliary de�nitions �rst: First, a node n is deter-

mined by a(n) (root-less) evaluation set E if for all e, e′ ∈ E, e(n) = e′(n).
Second, let eEn (φ) be the set of values assigned by e to successors m of n for

which it holds that l(m) = φ and that there are nodes n1, . . . , ni that are not

determined s.t. n ≺ n1 ≺ . . . ≺ ni ≺ m. Using these, we can specify how to

extend F to an evaluation set for all of Po:

◾ If ξ is of the form ¬φ then E is the smallest set such that the following

holds for each f ∈ F :

� If � ∈ fFn (φ) then f ∪ {(n,⊺)} ∈ E.
� If ⊺ ∈ fFn (φ) then f ∪ {(n,�)} ∈ E.
� If + ∈ fFn (φ) then f ∪ {(n,+)} ∈ E.

◾ If ξ is of the form φ ∨ ψ then

� if every function f ∈ F is such that {�,+} ⊆ fFn (φ) and {�,+} ⊆ fFn (ψ)
then E = {f ∪ (n,�)∣f ∈ F},

� otherwise E is the smallest set such that the following holds for each

f ∈ F :
� If ⊺ ∈ fFn (φ) or ⊺ ∈ fFn (ψ) then f ∪ {(n,⊺)} ∈ E.
� If � ∈ fFn (φ) and � ∈ fFn (ψ) then f ∪ {(n,�)} ∈ E.
� If (� ∈ fFn (φ) and + ∈ fFn (ψ)) or (+ ∈ fFn (φ) and � ∈ fFn (ψ)) or

(+ ∈ fFn (φ) and + ∈ fFn (ψ)) then f ∪{(n,+)} ∈ E, and if furthermore

neither nφ nor nψ is determined, then f ∪ {(n,�)} ∈ E.

◾ If ξ is of the form φ ∧ ψ then

� if every function f ∈ F is such that {�,+} ⊆ fFn (φ) or {�,+} ⊆ fFn (ψ)
then E = {f ∪ (n,�)∣f ∈ F},

� otherwise E is the smallest set such that the following holds for each

f ∈ F :
� If ⊺ ∈ fFn (φ) and ⊺ ∈ fFn (ψ) then f ∪ {(n,⊺)} ∈ E.
� If � ∈ fFn (φ) or � ∈ fFn (ψ) then f ∪ {(n,�)} ∈ E.
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� If (⊺ ∈ fFn (φ) and + ∈ fFn (ψ)) or (+ ∈ fFn (φ) and ⊺ ∈ fFn (ψ)) or

(+ ∈ fFn (φ) and + ∈ fFn (ψ)) then f ∪{(n,+)} ∈ E, and if furthermore

neither nφ nor nψ is determined, then f ∪ {(n,�)} ∈ E.

◾ If ξ is of the form φ→ ψ then

� if every function f ∈ F is such that {�,+} ⊆ fFn (φ) or {⊺} ⊆ fFn (ψ)
then E = {f ∪ (n,⊺)∣f ∈ F},

� if every function f ∈ F is such that {⊺} ⊆ fFn (φ) and {�,+} ⊆ fFn (ψ)
then E = {f ∪ (n,�)∣f ∈ F},

� otherwise E is the smallest set such that the following holds for each

f ∈ F :
� If � ∈ fFn (φ) or ⊺ ∈ fFn (ψ) then f ∪ {(n,⊺)} ∈ E.
� If ⊺ ∈ fFn (φ) and � ∈ fFn (ψ) then f ∪ {(n,�)} ∈ E.
� If + ∈ fFn (φ) and (� ∈ fFn (ψ) or + ∈ fFn (ψ)) then f∪{(n,+)} ∈ E, and
if furthermore neither nφ nor nψ is determined, then f∪{(n,⊺)} ∈ E.

� If ⊺ ∈ fFn (φ) and + ∈ fFn (ψ) then f ∪{(n,+)} ∈ E, and if furthermore

neither nφ nor nψ is determined, then f ∪ {(n,�)} ∈ E.

◾ If ξ is of the form ∃cφ then

� if every function f ∈ F is such that {�,+} ⊆ fFn (φ(c/C)) for all classes
C then E = {f ∪ (n,�)∣f ∈ F},

� otherwise E is the smallest set such that the following holds for each

f ∈ F :
� If ⊺ ∈ fFn (φ(c/C)) for some C then f ∪ {(n,⊺)} ∈ E.
� If � ∈ fFn (φ(c/C)) for all C then f ∪ {(n,�)} ∈ E.
� If + ∈ fFn (φ(c/C)) for some C and � ∈ fFn (φ(c/C)) for the rest

then f ∪ {(n,+)} ∈ E, and if furthermore more than one immediate

successor of n is not determined, then f ∪ {(n,�)} ∈ E.

◾ [Analogous if ξ is of the form ∃mφ or of the form ∃qφ.]

◾ If ξ is of the form ∀cφ then

� if every function f ∈ F is such that {�,+} ⊆ fFn (φ(c/C)) for some class

C then E = {f ∪ (n,�)∣f ∈ F},
� otherwise E is the smallest set such that the following holds for each

f ∈ F :
� If ⊺ ∈ fFn (φ(c/C)) for all C then f ∪ {(n,⊺)} ∈ E.
� If � ∈ fFn (φ(c/C)) for some C then f ∪ {(n,�)} ∈ E.
� If + ∈ fFn (φ(c/C)) for some C and ⊺ ∈ fFn (φ(c/C)) for the rest

then f ∪ {(n,+)} ∈ E, and if furthermore more than one immediate

successor of n is not determined, then f ∪ {(n,�)} ∈ E.
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◾ [Analogous if ξ is of the form ∀mφ or of the form ∀qφ.]

◾ If ξ is of the form t ∈ {c∣φ}7 then E is the smallest set such that the

following holds for each f ∈ F :

� If ⊺ ∈ fFn (φ(c/t)) then f ∪ {(n,⊺)} ∈ E.
� If � ∈ fFn (φ(c/t)) then f ∪ {(n,�)} ∈ E.
� If + ∈ fFn (φ(c/t)) then f ∪ {(n,+)} ∈ E.

◾ [Analogous if ξ is of the form t ∈ {m∣φ} or of the form t ∈ {q∣φ}.]

That concludes the recursive de�nition of �evaluation set�, and we can make

the �nal de�nition, which is the point of it all: a sentence is true (false)

if there exists a poset for the sentence for which the evaluation set consists

entirely of evaluations that assign the value ⊺ (�) to the root, and unde�ned
otherwise.

The �rst thing to note about this theory is that every sentence that is true

(false) according to the Chapter 5 theory is also true (false) according to this

one.8 Thus, all the positive results from Chapter 5 stand.

7.5 Expressive strength

The plan for the rest of this chapter is �rst, in this section, to demonstrate

that the two example sentences from Section 5.7 now get the intuitively correct

truth values and are thus examples of expressive strength and not weakness,

then to discuss consistency, followed by an explanation of how this formal

theory connects with non-veri�cationist constructivism and the notions of TIC

and TAP, and �nally to re�ect on the status of the theory and defend the failure

of bivalence.

The �rst example from Section 5.7 is the sentence R0+ ⊆ R, that is

∀c(c ∈ R0+ → c ∈ R)

or spelled out even more

∀c(c ∈ {a∣a ∈ R ∧ ∀n, q(⟨n, q⟩ ∈ a→ q ≥ −n−1)} → c ∈ R).
7Here, and twice below, the symbol �∈� is used in the object language. Every other occurrence
of this symbol in this list is in the meta-language.
8The proof is essentially the proof of theorem 2 in (Davis 1979). If a sentence is true (false)
in the Chapter 5 theory, construct the �semantical tree�, as de�ned in that paper, for it and
make it into a tree in our sense of the word by adding immediate successors to nodes that
already have some, in such a way that every node with successors have immediate successors
for each of its constituents. This tree for the sentence is also a poset for the sentence, and
it makes the sentence true (false).
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A poset that makes this sentence true is outlined in Figure 7.5. The poset in

question is the one that below the root has a sub-poset like the one displayed

for each class.

The evaluation set for the sub-poset consisting of only the node labeled C ∈ R
is, according to the base case of the recursive de�nition, the set

{(C ∈ R,⊺), (C ∈ R,�), (C ∈ R,+)},

as indicated in the last line in the table in the �gure. The other end node has a

similar three-element evaluation set. The root-less evaluation set for these two

nodes is therefore the nine combinations of these truth value assignments, giv-

ing the penultimate line in the �gure. As this root-less evaluation set includes

a combination that assigns ⊺ to both nodes, it is not the �rst but the second

of the bullet-points in the clause for conjunction that governs how to extend

the root-less evaluation set to an evaluation set for the sub-poset consisting of

the lower-most three nodes. As, furthermore, neither of the two end-nodes is

determined, the last of the three sub-bullet points prescribes a �splitting� of

the evaluations that satisfy its requirement. The result is the antepenultimate

line in the table.

Going up one more node is simple; the clause for class comprehension simply

tells us to extend each evaluation with the same value for that node as the value

for the node below. Then, at the node with the conditional, supervaluation

happens. That is, the �rst bullet point for conditionals applies, as it is the

case that in every evaluation, either the antecedent is assigned � or + or the

consequent is assigned ⊺. Thus every evaluation is extended with the value ⊺
for the node with the conditional.

As the class C is generic, every evaluation in the root-less evaluation set for

the full poset minus the root assigns ⊺ to every node at the top, so the recur-

sion clause for the universal quanti�er implies that every evaluation is to be

extended with ⊺ for the root. Ergo, the root sentence is true.

What we have here is a grounded truth about an inde�nitely extensible con-

cept. It is grounded because it obtains in virtue of a modal fact about all

possible elements of R0+ and R that is independent of the truth value of the

sentence itself. Notice also that even though we in this case have a proof

of the sentence, the proof is not part of the truth maker (as it must be for

any sentence about inde�nitely extensible concepts with a proper truth value

according to Dummett's (1991a, chapter 24) analysis). A sentence about an

inde�nitely extensible concept can be true or false by virtue of some poset even

if that escapes our powers of proving. (More on this in Section 7.7.)
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The other example from Section 5.7 is the sentence

∀a, b(a ∈ R ∧ b ∈ R→ a −R b ∈ R).

This is also true, but showing that is quite a bit more complicated than in any

of the previous examples, and the complexity necessitates a few preliminary

remarks. The poset we will be looking at does not �t onto an A4 sheet, so the

reader will �nd it on a large folded sheet at the end of the dissertation. As this

poset also contains quanti�ed sentences, it is again the case that the �gure

outlines the poset rather than actually displaying it. To save space, it has

further been necessary to change notation in the case of quanti�ed sentences:

Where above, e.g. in Figure 7.5, such a sentence has been shown with three

lines going down from it with three dots under two of them to indicate the

in�nitely many instances not shown, this �gure only has one line going down

from a quanti�ed sentence. The fact that only one of in�nitely many instances

is shown is instead indicated by the line being broken.

To facilitate reference to the individual nodes, row and column numbers have

been printed in the margin. The nodes in the top four rows, where there is

only one node per row, will be referred to simply by the row number. The

nodes in the rows that contain three nodes will be denoted by a name of form

�rc�, where r and c are the row and column number, respectively. For nodes in

the rows with more than three nodes, the format will be �rnc � where n, written

with roman numerals, is the number of the node, counted from left to right,

within the column. For instance, �12i2� denotes the node labeled QB1 ≡ QB3 .
The notation will be used ambiguously for a node and its label.

Although I have not explicitly included a �gure of the tree from which the

poset originates, it is easy enough to discern what it looks like; just think

of each of the nodes in row 20 as two nodes, one for each of its immediate

predessesors. The poset is formed from this tree by not identifying any nodes

at rows 1 through 19 (i.e. not any of the in�nitely many instances that most of

the nodes as displayed in the �gure have), and by identifying row 20 nodes to

the largest extent possible: a row 20 node is identi�ed with all row 20 nodes

with identical labels. In some cases this will mean that some of the six nodes

that are displayed as distinct are actually identical.

The row 20 nodes require further explanation. Each instance of node 9i1 has,

in the tree, an immediate successor labeled ⟨N ′
1,Q

A
1 ⟩ ∈ A, and each instance of

node 19i1 has an immediate successor labeled ⟨M1,X1
2n⟩ ∈ A. The identi�cation

in node 20i1 is meant to indicate that each instance of the former can be iden-

ti�ed with some instance of the latter (namely when the existential quanti�ers

in nodes 141 and 151 are instantiated in the right way). Something similar
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holds for the other nodes in row 20. For convenience I have displayed each of

these nodes with the label in both of the forms it takes in the meta-language

in the immediate predessesors.

I have cheated a little bit with the notation. Except for �−1�, the superscripts

in the poset are not exponents in accordance with the syntax as speci�ed in

Section 5.3, but are instead used as a supplement to subscripts.

It is not practically feasible to represent the evaluation set for this poset in

the table form used so far, as we would need 36 columns to get through the

row 20 nodes alone. Instead we will prove, in a more traditional form, that all

evaluations in the evaluation set assign ⊺ to the root.

Let classes A and B be given. We need to show that sentence 3 is true in

all evaluations. It is if all evaluations assign either � or + to 4 or ⊺ to 53, so

let an evaluation be given and assume that it assigns ⊺ to 4. It follows that

it assigns ⊺ to 51 and 52, and hence also to 61 and 62 and to all instances of

71 and 72 where N ′
1 designates an even natural number (the same of course

holds when it designates an odd number, but those cases are of no interest).

It again follows that there are instances of 81 and 82 that are also assigned ⊺;
let us decide that it is those instances that are displayed. Going further down,

it can be inferred that also 9i1, 9
ii
1 , 9

i
2 and 9ii2 , and hence 10i1, all instances of

10ii1 , 10
i
2 and all instances of 10ii2 are assigned ⊺, as are all instances of 11i1,

11ii1 , 11
i
2 and 11ii2 .

LetM1 be the same natural numeral as N ′
1, X

1
2n the same rational numeral as

QA1 and Y 1
2n the same rational numeral as QB1 . From the assignment of ⊺ to 9i1

and 9i2 it follows that ⊺ is also assigned to 20i1 and 20ii1 and thus to 19i1. Let

N1 and N1 be a natural numeral such that I(N1) and I(N1) is half of I(M1),
and let Q1 be a rational numeral such that I(Q1) equals I(X1

2n) minus I(Y 1
2n).

It follows that 19ii1 , 18
i
1, 18

ii
1 , 171, 161, 151, 141 and 131 are assigned ⊺. Ergo,

12i3 is also assigned ⊺.

The next sub-goal is to show that 11i3 is assigned ⊺ for the given N1 and Q1

and all Q3. If I(Q3) is equal to I(Q1), then 12iii3 is ⊺ so 11i3 is too. Therefore,

assume that I(Q3) is di�erent from I(Q1), so that 12iii3 is �. Let rational

numerals X3
2n and Y 3

2n be given. The sub-sub-goal is to show that 172 is �.
If 18ii2 is �, this follows directly. It cannot be +, as it is assigned either ⊺
or � by the base case of the recursive de�nition of �evaluation set�. Assume

therefore that it is ⊺, from which it follows that I(Q3) is equal to I(X3
2n)

minus I(Y 3
2n). 19ii2 is ⊺, so we need to show that 19i2 is �. Let also QA3 be the

same rational numeral as X3
2n and Q

B
3 the same rational numeral as Y 3

2n. From

I(Q1) being di�erent from I(Q3), I(Q1) being equal to I(QA1 ) minus I(QB1 )
and I(Q3) being equal to I(QA3 ) minus I(QB3 ) it follows that either I(QA1 ) is
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di�erent from I(QA3 ) or I(QB1 ) is di�erent from I(QB3 ). The proof continues
analogously in the two cases, so assume the former. In that case, 12i1 is �. We

concluded above that 11i1 is ⊺, so it follows that 20i2 is �.9 Hence, also 19i2, 18
i
2

and 172 are �. As both M1, X3
2n and Y 3

2n were arbitrary, and any alternative

choice of N1 would make 19ii2 �, we can then infer that 162, 152, 142 and 132

are � too, as is 12ii3 . Thus, we can conclude that 11i3 is ⊺, as we aimed for. As

it is for all Q3, also 10i3 is ⊺, and combining this with the conclusion from the

previous paragraph, we can infer that 9i3 is ⊺.

The last sub-goal before we can reach the overall conclusion is to show that

11ii3 is ⊺ for all natural numerals N2 and rational numerals Q2, so let such

numerals be given. If 12v3 is true, then so is 11ii3 , so assume that it is false (also

this node cannot be +). Let a natural numeral N2 and rational numerals X2
2n

and Y 2
2n be given. Our sub-sub-goal is now to show that 173 is �. It is if 18ii3

is �, so assume that it is ⊺ (again + is not an option). It follows that I(N2)
is equal to I(N2) and that I(Q2) is equal to I(X2

2n) minus I(Y 2
2n). Similarly,

173 is � if 19ii3 is � so assume also that this node is ⊺, and infer that I(M2)
is twice I(N2). Let N ′

2 be the same natural numeral as M2, QA2 the same

rational numeral as X2
2n and QB2 the same rational numeral as Y 2

2n. It will be

demonstrated that either 20i3 or 20
ii
3 is �. From

∣I(QA2 ) − I(QA1 )∣ ≤ I(N ′
2)−1 + I(N ′

1)−1

and

∣I(QB2 ) − I(QB1 )∣ ≤ I(N ′
2)−1 + I(N ′

1)−1

follows

∣I(Q2) − I(Q1)∣ ≤ I(N2)−1 + I(N1)−1,

as is seen from this (recall that I(2 ⋅N1) equals I(N ′
1), I(2 ⋅N2) equals I(N ′

2),
I(N1) equals I(N1) and I(N2) equals I(N2)):

∣I(Q2) − I(Q1)∣ = ∣(I(QA2 ) − I(QB2 )) − (I(QA1 ) − I(QB1 ))∣
≤ ∣I(QA2 ) − I(QA1 )∣ + ∣I(QB2 ) − I(QB1 )∣
≤ I(N ′

2)−1 + I(N ′
1)−1 + I(N ′

2)−1 + I(N ′
1)−1

= (2 ⋅ I(N2))−1 + (2 ⋅ I(N1))−1 + (2 ⋅ I(N2))−1 + (2 ⋅ I(N1))−1

= I(N2)−1 + I(N1)−1

By contraposition we can infer from the assumed assignment of � to 12v3 that

either 12ii1 or 12ii2 is �. So as both 11ii1 and 11ii2 are ⊺, either 20i3 or 20ii3 is �.
Thus 19i3, 18

i
3 and 173 are �. From the arbitrariness of N2, X2

2n and Y 2
2n and

9Here and in a similar inference below the modi�cations in Section 7.3 are crucial: had it not
been for them, 20i2 being + would also be a possibility, and the proof would not go through.
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the fact that any alternative choice of M2 would render 19ii3 � follows then

that 163, 153, 143 and 133 are as well. So 12iv3 is � and 11ii3 is ⊺.

That was the sub-goal and there is now a clear path to the conclusion: The

assignment of ⊺ to 11ii3 has been proved for all N2 and Q2, so 10ii3 and 9ii3 are

also ⊺. With the conclusion from the previous paragraph we can then infer

that 83 is ⊺, i.e. that some instance of 83 is ⊺, so 73 is ⊺ as well. This has been

proved for all N1, so also 63 and hence 53 is ⊺. Discarding the assumption that

4 is ⊺, it can be inferred that 3 is ⊺. Also the choices of the classes A and B

were arbitrary, so we can conclude that 2 and 1 are assigned ⊺. This holds for
all evaluations, so ∀a, b(a ∈ R ∧ b ∈ R→ a −R b ∈ R) is true.

We have thus, if nothing else, solved the two speci�c problems mentioned in

Section 5.7. A sentence such as R0+ ⊆ R can, even though it in a certain sense

depends on both unde�ned sentences and itself (because a real number can be

de�ned in such a way that one or more of its elements depend on the truth

value of R0+ ⊆ R), be true. It is so intuitively because its truth value doesn't

really depend on the actual truth values of all sentences of the form C ∈ R0+

and C ∈ R, but can be grounded in the fact that any class that is an element

of R0+ must by necessity also be an element of R, and now we have a precise

theory backing up that intuitive verdict.

Do we then in general have a semantics strong enough to build a decent math-

ematics on, that is, a semantics that even though it is trivalent is such that the

unde�ned sentences do not have the extremely damaging consequences that

they do in both intuitionism and in class theory adapted directly from Kripke's

theory? I hope so. However, succeeding in establishing �the class of positive

real numbers is a subclass of the class of real numbers� as true on one of the

last pages of this dissertation is comparable in humorous patheticalness to

the famous fact that Russell and Whitehead proved that one plus one equals

two on page 379 of Principia Mathematica. That is to say that as far as a

non-veri�cationist constructivist analysis goes, this dissertation is a mere pro-

legomena. Such an analysis would have to be developed in considerable detail

before the adequacy of the precise theory presented in this chapter could be

ascertained.

It would not come as a shock to me if it turned out that a sentence that is

intuitively true or false (given non-veri�cationist constructivism) is unde�ned

according to the formal theory of this chapter. My con�dence, for what it

is worth, in the general approach taken in this and the previous chapter is,

however, high. I believe that if such a sentence were to be discovered, it would

also be possible to blame that outcome on the formal theory quantifying over
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evaluations that are not genuine possibilities, in the style of Section 7.3, and

thereby see a path to rectifying the formal theory.

7.6 Consistency

Unfortunately, I will also have to leave another important question open. I

think that the theory is consistent but it has resisted my sustained attempts

to prove it so. In this section I will explain my reason for believing that it is

consistent and what I think the reaction should be if it nevertheless turns out

to be inconsistent.

A heuristic argument for consistency can be build on the idea in Section 7.2.

The creating subject assigns more and more truth values to sentences in a

temporal process, so if he is to construct an inconsistency, one must be the

�rst. We can divide the new truth values he assigns into two categories. First,

he can assign a truth value to a sentence ξ using a poset for ξ where he in

the process also assigns truth values to one or more of the constituents of ξ

(by virtue of sub-posets generated by nodes that are immediate successors to

the root) in such a way that the Strong Kleene prerequisites for assigning ξ

the value he does, are satis�ed. For instance he may make φ ∨ ψ true using a

poset that, in e�ect, also makes φ true. Let us call this a �Kleene assignment�.

Second, he may use a poset for ξ where supervaluation takes place at the

root, without the Strong Kleene prerequisites being satis�ed; a �supervaluation

assignment�.

The �rst inconsistency cannot be created by a sentence that has been made

both true and false by Kleene assignments, for that can only happen if at least

one of the constituents is already inconsistent. So at least one �half� of an

inconsistency must come from a supervaluation assignment. But a superval-

uation assignment only happens when the evaluation set for the rest of the

poset shows, that a combination of truth values that would give the prerequi-

sites for a Kleene assignment of the opposite truth value, is not a possibility.

The idea is that during the process of making more and more sentences true

and false, the subject only ever works his way up through the evaluations that

are included in the evaluation set of each poset (cf. the example in Section 7.2).

So if a sentence ξ is supervaluated as, say, true by some poset Po, then the

process can only �satisfy� one of the evaluations in the evaluation set of Po

and therefore the prerequisites for making ξ false can never be satis�ed.

Of course, this presupposes that the evaluation sets genuinely include all pos-

sibilities. That is a guarantee I'm not in a position to give, and that is why

the heuristic argument does not amount to a proof.
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If it turns out that the theory is inconsistent, it would be because the idea of

considering all possibilities when doing supervaluation is not correctly imple-

mented. If ξ is supervaluated as, say, true, and ξ also becomes false (either

by a Kleene step or by supervaluation), then that is a possibility that was

ignored when ξ was made true. In that case the theory should be amended

in a way that resembles the modi�cation in Section 7.2 in such a way that

the disregarded possibilities causing the inconsistency are taken into account.

(And similarly, if it is discovered that, after the modi�cations in Section 7.3,

we are still considering too many possibilities, that should also be amended.)

I am o�ering the formal theory of this chapter as my best suggestion on how

to implement the philosophical ideas discussed. Partially because of the lack

of a consistency proof, I cannot be sure that this implementation is perfect.

7.7 TIC and TAP

We have perhaps solved, and at least made considerable progress on, the prob-

lem of expressive weakness. In the process we also got rid of the reliance on

classical trans�nite ordinals, as the present theory is not formulated using a

monotonic sequence of evaluations of the entire set of sentences, like Kripke's

and the Chapter 6 theory, but instead works in such a way that the assignment

of a truth value to a given sentence is done without a need to take anything

but a poset for that speci�c sentence into account. However, as the theory has

been formulated in classical set theory, we are still illegitimately piggyback-

ing on classical mathematics, and we need to get the theory in line with the

restrictions that non-veri�cationist constructivism places on mathematics.

My reason for �rst formulating the theory in classical set theory was the need

to convey a precise understanding of the theory to the reader, and the contem-

porary dominance of classical set theory has made it a standard of precision.

I have therefore employed set theory as a ladder, in the famous metaphor of

Wittgenstein, and it is now time to kick it away.

Notice �rst that the de�nition of �synonymous� in Section 5.3 is entirely le-

gitimate as it stands. The de�nition of synonymity between terms relies only

on classical arithmetic, which was vindicated in Section 4.4, and the classical

theory of rational numbers, which easily could be as well. On top of that, the

de�nition of synonymity between closed classes relied only on �nite sequences

of simple syntactic transformations. Such transformations are of course also

unproblematic for non-veri�cationist constructivism.

Considering posets and their evaluation sets, let us start out softly by again

considering the �rst example of this chapter, the sentence φ∧¬φ, and explain
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how it can be made false-in-content. Clearly, the existence of the three node

poset for this sentence does not presuppose set theory. Constructing the three

nodes, their labels and the relations of successor and immediate successor men-

tally is a small accomplishment, and when that is done, a sentence expressing

the existence of the poset is TIC. Then the subject can construct an evalua-

tion mentally. He can �rst assign the value ⊺ to the node labeled φ and then,

following the rule for negation, assign � to the node labeled ¬φ. Similarly, he

can construct the two other evaluations of the two end nodes (see Section 7.3),

and when he has done that and realized that what he has constructed are all

the possible evaluations of those nodes and that none of them assign ⊺ to both

nodes, he can extend all the evaluations with the assignment of � to the root.

Then he has made φ ∧ ¬φ FIC.

When a sentence requires an in�nite poset in order to be made true, it cannot

become true-in-content, but then truth-as-potentiality takes over, so to speak,

in a way that is very similar to how it works for arithmetic, as explained

in Chapter 4. Let us turn to the sentence R0+ ⊆ R for an example of that;

see pages 206-208. The poset described there cannot exist as a completed

construction. But the subject can give himself a set of instructions that covers

how any part of the poset is to be constructed. They would go like this:

�Create a node labeled R0+ ⊆ R. Under it, place nodes with each of the

instances of that sentence. For each of those nodes do . . . �, where the dots

represent an instruction for how to create the sub-poset as shown in Figure 7.5.

This description cannot be followed to completion, but as the description gives

determinate instructions on how to construct any part of the poset, the poset

exists as a potentially in�nite structure in the sense that the class of natural

numbers does (Chapter 4) and a lawless choice sequence does not (Chapter 2).

For each class C, it is TAP that the sub-poset consisting of just the node

labeled C ∈ R has an evaluation assigning ⊺ to its sole node, when that claim

has been formulated. It is also TAP that it has evaluations with � and with +.
As the same holds for the other end node, it is TAP (when formulated) that the

sub-poset consisting of the lower-most three nodes has an evaluation assigning

⊺ to all three nodes, and similarly for the other 11 evaluations in Figure 7.5.

And of course analogous sentences are TAP for the bottom-most four nodes.

So no sentence saying that there is an evaluation assigning ⊺ to the node

labeled C ∈ {a∣a ∈ R ∧ ∀n, q(⟨n, q⟩ ∈ a → q ≥ −n−1)} and � or + to the node

labeled C ∈ R is TAP, and therefore the only sentences describing evaluations

for the sub-poset consisting of the �ve bottom-most nodes that can be TAP

when formulated are some that, among other things, assert that ⊺ is assigned

to the root of that sub-poset. For any possible class C this would hold. And

that is the truth maker for the TAP of the sentence R0+ ⊆ R.
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Similar accounts can be given of the other examples considered above, and in

this way the formal theory given in classical set theory can to a large extent

be legitimized on the basis consisting of the constructivist notions of TIC and

TAP. But only �to a large extent�, not completely. According to the classical

theory there are posets and/or evaluations of them that cannot be (�nitely)

described. Take for example a poset consisting of just a root labeled with a

quanti�ed sentence and immediate successors thereof labeled with each of its

instances, none of which are atomic sentences. According to the classical theory

this poset has an evaluation set with uncountably many (3ℵ0) evaluations, some

of which are therefore indescribable.

We have no place for such Platonic entities, so the theory I will stand by is not

identical to the one given in Section 7.4. Two modi�cations are necessary. The

�rst is that a sentence is only true or false if there is a describable poset for

which the evaluation set only contains evaluations that assign ⊺ to the root,

and similarly for falsity. The second is that only describable evaluations are

acknowledged and that the quanti�cation in the supervaluation clauses and in

the de�nitions of �true� and �false� are thus restricted (restricted, that is, from

the perspective of the Platonist).10

Notice that the former restriction potentially robs some sentences of the status

of being true or false, while the latter potentially assigns that honor to more

sentences. I can't think of an example of a sentence that has di�erent truth

values in the classical and the constructivist versions of the theory, but it would

be most interesting to know of one.

7.8 Conventionalism and failure of bivalence

That's it. The designing and modifying and amending of theories of classes

that has been going on for the last three chapters is now completed � at least as

far as this dissertation goes. The theory as it is now is my best recommendation

for a theory of classes on which to build a non-veri�cationist constructivism.

It is now time to take a step back and re�ect on the result. What is the status

of the theory? Have we now found The Correct Rules for the subject to follow?

I can think of two di�erent senses in which a set of rules for the connectives,

the quanti�ers and class comprehension could be the uniquely correct one.

The �rst is a linguistic sense: that they adequately capture what we have all

meant, all along, when we used the connectives etc. The second is that the

rules somehow re�ect the grammar of independently given propositions. It

10Similarly, the interpretation function, introduced in Section 5.3, must assign to each pred-
icate a describable subset of the domain, i.e. a subclass of the domain.
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should be obvious that the rules are not �correct� in either of these senses.

The latter would, again, require the kind of Platonistic assumption that we

have long ago forsaken. And claiming that the rules are correct in the former

sense would be monumentally implausible, even if the result (what sentences

are declared true, false and unde�ned) is largely in agreement with intuition,

for the ordinary language user certainly does not think in terms of trees, posets

and evaluation sets when ascertaining the truth value of a sentence.

It is thus di�cult to see how any set of rules for the subject could be defended

as the uniquely correct one. Rather, the rules that the subject decides to follow

when dealing with, e.g., �∧� constitute the meaning of that connective, and

as there are di�erent sets of rules that he could decide on, the meaning of the

conjunction is not a given, but a matter of convention.

So I do not think that the Kripke-like theory of classes from Chapter 5 is

mistaken. It is just, due to its expressive weakness, of limited usefulness. And

the theory of this chapter is not the correct one, but just the most useful (or

so I will believe until I am presented with a superior set of rules).

I will close this chapter by connecting this conventionalism with the subject

of failure of bivalence and thus tie a knot back to the discussion of Brouwer,

where I criticized his arguments against bivalence. I owe a proper and explicit

justi�cation of why my reasons for settling on a gappy semantics are better

than his. Speci�cally � to return to the example of Russell's Class from sec-

tion 5.4 � why settle on rules that have as a consequence that neitherR ∈ R nor

R ∉ R is true? A critic may attempt to use the strong objectivist assumption

that marks the di�erence between non-veri�cationist and veri�cationist con-

structivism against this class theory as follows: The idea of TAP as a concept

of truth is only legitimate in so far as it is assumed that there are objective

facts about which constructions are possible and which are nor, so if R ∈ R
cannot be made true then there is an objective fact to the e�ect that it is not

possible to construct the truth of R ∈ R. Thus, we could let the subject follow

the rule make ¬φ true if it is not possible to make φ true and use that to make

R ∉ R true.

This is where it gets crucial that TIC is created in time. For even though

it is objective what can be made TIC and FIC, we in a certain sense have to

imagine the creating subject working in a universe where there are no facts one

way or the other about that. Or at least that the creating subject is working

in a universe where those facts are not available to him. We can �instruct�

the subject to follow the rule that he can make R ∈ R TIC if he has already

made R ∉ R TIC and the rule that he can make it FIC if he has already made

R ∉ R FIC, but we cannot instruct him to make R ∈ R FIC if it is impossible
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to make it TIC. That is not a rule he can follow, for it is his own actions

that will determine whether it is impossible to make R ∈ R TIC, including his

action or lack thereof to make R ∈ R FIC, and thus such a fact of possibility

or impossibility is not available to him. What is possibly TIC and what is not

are not Platonic facts existing independently of the constructions he makes

and thus they cannot be appealed to in setting up rules for him to follow.11

Even in the light of this explanation there may still seem to be a pressure to

close the gap, so to speak, between TIC and FIC. One might retort that the

creating subject is probably able to re�ect on his own construction process and

thus realize, through the same kind of reasoning that we employ, that there is

no way for him to make R ∈ R TIC. On that basis one might think he should

be able to make it FIC. But if he was so allowed, then after he had made it

FIC he could from that construct the TIC of the same sentence.

Let me make it clear what was not my point with that last sentence. I am not

simply saying that the suggestion would result in a contradiction and therefore

it must be wrong. That would not be to o�er a proper explanation. Rather,

my point is that if the subject was allowed to do that, then it would not be

correct, after all, that there is no way for him to make R ∈ R TIC, which was

the premise.

We have to settle on one �xed set of rules for the subject to follow. When

those rules result in some sentence being unde�ned, we may feel an urge to

make it either true or false, but that can only be done by changing the rules,

which might undermine the reasons we had for wanting to make the sentence

either true or false.12

There are legitimate rules that would result in a bivalent semantics. For in-

stance, the subject could choose to follow the rule that he at any time can

make any sentence of the language of class theory TIC. However, that would

completely change the meaning of each of those sentences; each one would

become an empty tautology. Less drastically, bivalence could be achieved by

imposing a hierarchy on the classes, and such a theory could be useful for

certain purposes. But an expressively strong class theory needs, I think, to be

11It is because of this indeterminacy that supervaluation must happen by quantifying over
more than one evaluation, cf. footnote 5 on page 201.
12A comparison with the sentences of Yablo's (1993) Paradox is interesting. For each natural
number n, the n'th Yablo Sentence, Yn, is �For all m > n the sentence Ym is not true�.
According to both Kripke's theory and (a truth version of) the present theory all the Yablo
Sentences are unde�ned. But here we could, in contrast to the cases of Russell's Class and
the Liar, arbitrarily decide to make, say, Y17 true based on the unde�nedness of Yn for all
n > 17. That would not be self-undermining. It would not be self-undermining as long as
we stuck to rules that did indeed make all Yn for n > 17 unde�ned.
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trivalent. Because of diagonalization, it would otherwise not be clear how we

could express theorems about all real numbers.

In fact such a hierarchy has been implicitly imposed and used throughout this

entire discussion of class theory. For we have expressed on many occasions

that it is not the case that R ∈ R is TIC and thus in the meta-language

asserted that Russell's Class is not an element of Russell's Class. It is an

arti�cial restriction of expressibility of the object language that allows us to

do so. Recall that at the end of Section 4.4 it was explained that monotonicity

was achieved by avoiding rules that made reference to such empirical matters

as what happens not to have been constructed yet at a given point in time.

That was an arti�cial restriction of expressibility that was useful for doing

mathematics. It is similarly an arti�cial restriction of expressibility that we

have all along only considered rules for the creating subject that only take his

own constructions as input and do not make reference to what is true and false

in our language. That restriction of expressibility was also useful: it made it

possible to write this dissertation. Had it not been for that restriction, some

sentences in the formal language we are studying would have depended on

sentences in the language we are using, meaning that we would have been

caught up in the loop, so to speak, and not in a position to take the truth

values of the sentences of the object language as given, and we might not have

been able to state that R ∈ R is either TIC or not TIC.



Conclusion

The overall goal for this inquiry, as for so many other metaphysical inquiries,

has been to avoid making excessive ontological claims, while �saving the phe-

nomena�. Let us here consider how non-veri�cationist constructivism scores

on those two counts.

I claim to have located mathematical objects among the entities that it is

relatively uncontroversial that one must posit anyway, that is, among parts

of Being that we seem to have to stipulate as existing, already to save other

phenomena than the mathematical. These ontological assumptions are that

there are mental constructions and intentional directedness; that there are non-

actual possibilities containing mental constructions of any �nite complexity;

and that actual human beings have the ability to commit to rules with a

potential in�nity of applications, using a sense of simplicity. One can of course

have worries about these assumptions, but on balance they seem much easier

to swallow than the obvious, strong ontological commitments of the Platonist,

discussed in Chapter 1, and the hidden, strong ontological commitments of the

intuitionist, revealed in Chapter 2.

The non-veri�cationist constructivist has to pay a semantic cost that both the

Platonist and Mill (whom we discussed brie�y in the beginning of Chapter 1)

avoids, namely that mathematical language cannot be taken at face value but

has to be interpreted with implicit modal operators. However, I �nd that cost

negligible compared to the problems that both the Platonist and Mill face.

What does �saving the phenomena� amount to in this context? First and fore-

most it involves the ability to reconstruct all the mathematics that is essential

to empirical science. If that cannot be done, we have a serious explanatory

problem. Second, I think it should be counted as �phenomena� � i.e., as a da-

tum that has to be accounted for, rather than something we can accept being

denied by a philosophical theory � that we can quantify over, and truthfully

assert many substantial things about, all real numbers and all collections, and

220
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inde�nite extensibility makes that a challenge. For both of these �phenomena�,

I am optimistic on behalf of non-veri�cationist constructivism, but the results

so far are too meager to allow any con�dent conclusions to be drawn. Beyond

arithmetic, this dissertation is, as already mentioned, little more than a pro-

legomena to non-veri�cationist constructivist mathematics. Much more needs

to be done.

However, some of the reasons for being optimistic become apparent if we con-

nect back to the penultimate paragraph of Chapter 1. There we listed a num-

ber of weaknesses of intuitionism. First, non-constructive proofs were ruled

out. They are not ruled out by non-veri�cationist constructivism, simply

because �non-constructive proofs� is a misnomer and should be called �non-

veri�cationist proofs�, i.e., proofs that do not verify what the speci�c truth-

maker is. We can accept those. Second, discontinuous functions were declared

non-existing by intuitionism. They are alive and well in non-veri�cationist

constructivism. Third, the failures of tertium non datur in intuitionism result,

in the words of Herman Weil (1963, 54), �in an almost unbearable awkward-

ness�. In non-veri�cationist constructivism there are also failures of tertium

non datur, but they have been eliminated entirely from arithmetic and it re-

mains to be seen whether the awkwardness in class theory might not be bear-

able. Fourth and last, while the intuitionist must reject many impredicative

de�nitions, any impredicative class that one might try to de�ne does exist as a

class according to non-veri�cationist constructivism, i.e., as a linguistic object

plus criteria of truth and falsity for sentences involving it. Some impredicative

de�nitions breed unde�ned sentences. But we saw in Section 7.5 that this

does not necessarily have detrimental e�ects on important mathematical the-

orems. However, again, more work needs to be done to ascertain the in�uence

of pathological classes on the rest of mathematics.

Let me close by considering which of the philosophically important properties

traditionally attributed to mathematics the queen of the sciences has according

to non-veri�cationist constructivism. The answers rely on the considerations

in Chapter 4.

Mathematical knowledge is a priori in the sense that mathematical knowledge

is independent of perceptual experience. However, it is not independent of the

inner experience of making mental constructions following rules.

It is a delicate matter whether mathematical truths are analytic. To be an

analytic truth is to be true by virtue of linguistic conventions alone. The

ultimate truth makers for mathematical truths are rules that are adopted by

convention, but adopting conventions that apply to a potential in�nity of cases

relies on a non-conventional sense of simplicity, and that might be enough to
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categorize them as synthetic. However, the reliance on a sense of simplicity

may be necessary for adopting any linguistic convention and thus be an es-

sential component of such conventions. In that case, mathematical truths are

analytic.

Next up is the property of being necessary. Since our sense of simplicity is

presumably not necessary, and mathematics is relative to such a sense, math-

ematics is not necessary. It cannot be ruled out that aliens with a radically

di�erent sense of simplicity have a radically di�erent mathematics. Neverthe-

less, true mathematical sentences are necessarily true, at least if sentences are

individuated by meaning and not just syntax, as seems reasonable. For the

meaning of a mathematical sentence is given by the accepted rules and the

simplicity measure on which they are founded, and as long as they are kept

�xed, no variation in the truth values of sentences is possible.

Finally, there is the question of whether mathematics is apodictic. Here the

answer is clearly in the negative: as an attempt at following a rule can be

di�erent from the correct use of the rule, violations of adopted rules may well

go unnoticed, so mathematical knowledge is not absolutely certain.
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1 ∀a, b(a ∈ R ∧ b ∈ R→ a−R b ∈ R)

2 ∀b(A ∈ R ∧ b ∈ R→ A−R b ∈ R)

3 A ∈ R ∧B ∈ R→ A−R B ∈ R

4 A ∈ R ∧B ∈ R

5 A ∈ R B ∈ R A−R B ∈ R

6 ∀n1∃q1(〈n1, q1〉 ∈ A ∧ ∀q3(〈n1, q3〉 ∈ A→ q1 ≡ q3) ∧ ∀n2, q2(〈n2, q2〉 ∈ A→ |q2 − q1| ≤ n−12 + n−11 )) ∀n1∃q1(〈n1, q1〉 ∈ B ∧ ∀q3(〈n1, q3〉 ∈ B → q1 ≡ q3) ∧ ∀n2, q2(〈n2, q2〉 ∈ B → |q2 − q1| ≤ n−12 + n−11 )) ∀n1∃q1(〈n1, q1〉 ∈ A−R B ∧ ∀q3(〈n1, q3〉 ∈ A−R B → q1 ≡ q3) ∧ ∀n2, q2(〈n2, q2〉 ∈ A−R B → |q2 − q1| ≤ n−12 + n−11 ))

7 ∃q1(〈N ′1, q1〉 ∈ A ∧ ∀q3(〈N ′1, q3〉 ∈ A→ q1 ≡ q3) ∧ ∀n2, q2(〈n2, q2〉 ∈ A→ |q2 − q1| ≤ n−12 +N ′1
−1)) ∃q1(〈N ′1, q1〉 ∈ B ∧ ∀q3(〈N ′1, q3〉 ∈ B → q1 ≡ q3) ∧ ∀n2, q2(〈n2, q2〉 ∈ B → |q2 − q1| ≤ n−12 +N ′1

−1)) ∃q1(〈N1, q1〉 ∈ A−R B ∧ ∀q3(〈N1, q3〉 ∈ A−R B → q1 ≡ q3) ∧ ∀n2, q2(〈n2, q2〉 ∈ A−R B → |q2 − q1| ≤ n−12 +N−11 ))

8 〈N ′1, QA
1 〉 ∈ A ∧ ∀q3(〈N ′1, q3〉 ∈ A→ QA

1 ≡ q3) ∧ ∀n2, q2(〈n2, q2〉 ∈ A→ |q2 −QA
1 | ≤ n−12 +N ′1

−1) 〈N ′1, QB
1 〉 ∈ B ∧ ∀q3(〈N ′1, q3〉 ∈ B → QB

1 ≡ q3) ∧ ∀n2, q2(〈n2, q2〉 ∈ B → |q2 −QB
1 | ≤ n−12 +N ′1

−1) 〈N1, Q1〉 ∈ A−R B ∧ ∀q3(〈N1, q3〉 ∈ A−R B → Q1 ≡ q3) ∧ ∀n2, q2(〈n2, q2〉 ∈ A−R B → |q2 −Q1| ≤ n−12 +N−11 )

9 〈N ′1, QA
1 〉 ∈ A ∧ ∀q3(〈N ′1, q3〉 ∈ A→ QA

1 ≡ q3) ∀n2, q2(〈n2, q2〉 ∈ A→ |q2 −QA
1 | ≤ n−12 +N ′1

−1) 〈N ′1, QB
1 〉 ∈ B ∧ ∀q3(〈N ′1, q3〉 ∈ B → QB

1 ≡ q3) ∀n2, q2(〈n2, q2〉 ∈ B → |q2 −QB
1 | ≤ n−12 +N ′1

−1) 〈N1, Q1〉 ∈ A−R B ∧ ∀q3(〈N1, q3〉 ∈ A−R B → Q1 ≡ q3) ∀n2, q2(〈n2, q2〉 ∈ A−R B → |q2 −Q1| ≤ n−12 +N−11 )

10 ∀q3(〈N ′1, q3〉 ∈ A→ QA
1 ≡ q3) ∀q2(〈N ′2, q2〉 ∈ A→ |q2 −QA

1 | ≤ N ′2
−1 +N ′1

−1) ∀q3(〈N ′1, q3〉 ∈ B → QB
1 ≡ q3) ∀q2(〈N ′2, q2〉 ∈ B → |q2 −QB

1 | ≤ N ′2
−1 +N ′1

−1) ∀q3(〈N1, q3〉 ∈ A−R B → Q1 ≡ q3) ∀q2(〈N2, q2〉 ∈ A−R B → |q2 −Q1| ≤ N−12 +N−11 )

11 〈N ′1, QA
3 〉 ∈ A→ QA

1 ≡ QA
3 〈N ′2, QA

2 〉 ∈ A→ |QA
2 −QA

1 | ≤ N ′2
−1 +N ′1

−1 〈N ′1, QB
3 〉 ∈ B → QB

1 ≡ QB
3 〈N ′2, QB

2 〉 ∈ B → |QB
2 −QB

1 | ≤ N ′2
−1 +N ′1

−1 〈N1, Q3〉 ∈ A−R B → Q1 ≡ Q3 〈N2, Q2〉 ∈ A−R B → |Q2 −Q1| ≤ N−12 +N−11

12 QA
1 ≡ QA

3 |QA
2 −QA

1 | ≤ N ′2
−1 +N ′1

−1 QB
1 ≡ QB

3 |QB
2 −QB

1 | ≤ N ′2
−1 +N ′1

−1 〈N1, Q1〉 ∈ A−R B 〈N1, Q3〉 ∈ A−R B Q1 ≡ Q3 〈N2, Q2〉 ∈ A−R B |Q2 −Q1| ≤ N−12 +N−11

13 ∃n,m, x2n, y2n(〈m,x2n〉 ∈ A ∧ 〈m, y2n〉 ∈ B ∧m ≡ 2 · n ∧ 〈N1, Q1〉 ≡ 〈n, x2n − y2n〉) ∃n,m, x2n, y2n(〈m,x2n〉 ∈ A ∧ 〈m, y2n〉 ∈ B ∧m ≡ 2 · n ∧ 〈N1, Q3〉 ≡ 〈n, x2n − y2n〉) ∃n,m, x2n, y2n(〈m,x2n〉 ∈ A ∧ 〈m, y2n〉 ∈ B ∧m ≡ 2 · n ∧ 〈N2, Q2〉 ≡ 〈n, x2n − y2n〉)

14 ∃m,x2n, y2n(〈m,x2n〉 ∈ A ∧ 〈m, y2n〉 ∈ B ∧m ≡ 2 ·N1 ∧ 〈N1, Q1〉 ≡ 〈N1, x2n − y2n〉) ∃m,x2n, y2n(〈m,x2n〉 ∈ A ∧ 〈m, y2n〉 ∈ B ∧m ≡ 2 ·N1 ∧ 〈N1, Q3〉 ≡ 〈N1, x2n − y2n〉) ∃m,x2n, y2n(〈m,x2n〉 ∈ A ∧ 〈m, y2n〉 ∈ B ∧m ≡ 2 ·N2 ∧ 〈N2, Q2〉 ≡ 〈N2, x2n − y2n〉)

15 ∃x2n, y2n(〈M1, x2n〉 ∈ A ∧ 〈M1, y2n〉 ∈ B ∧M1 ≡ 2 ·N1 ∧ 〈N1, Q1〉 ≡ 〈N1, x2n − y2n〉) ∃x2n, y2n(〈M1, x2n〉 ∈ A ∧ 〈M1, y2n〉 ∈ B ∧M1 ≡ 2 ·N1 ∧ 〈N1, Q3〉 ≡ 〈N1, x2n − y2n〉) ∃x2n, y2n(〈M2, x2n〉 ∈ A ∧ 〈M2, y2n〉 ∈ B ∧M2 ≡ 2 ·N2 ∧ 〈N2, Q2〉 ≡ 〈N2, x2n − y2n〉)

16 ∃y2n(〈M1, X1
2n〉 ∈ A ∧ 〈M1, y2n〉 ∈ B ∧M1 ≡ 2 ·N1 ∧ 〈N1, Q1〉 ≡ 〈N1, X1

2n − y2n〉) ∃y2n(〈M1, X3
2n〉 ∈ A ∧ 〈M1, y2n〉 ∈ B ∧M1 ≡ 2 ·N1 ∧ 〈N1, Q3〉 ≡ 〈N1, X3

2n − y2n〉) ∃y2n(〈M2, X2
2n〉 ∈ A ∧ 〈M2, y2n〉 ∈ B ∧M2 ≡ 2 ·N2 ∧ 〈N2, Q2〉 ≡ 〈N2, X2

2n − y2n〉)

17 〈M1, X1
2n〉 ∈ A ∧ 〈M1, Y 1

2n〉 ∈ B ∧M1 ≡ 2 ·N1 ∧ 〈N1, Q1〉 ≡ 〈N1, X1
2n − Y 1

2n〉 〈M1, X3
2n〉 ∈ A ∧ 〈M1, Y 3

2n〉 ∈ B ∧M1 ≡ 2 ·N1 ∧ 〈N1, Q3〉 ≡ 〈N1, X3
2n − Y 3

2n〉 〈M2, X2
2n〉 ∈ A ∧ 〈M2, Y 2

2n〉 ∈ B ∧M2 ≡ 2 ·N2 ∧ 〈N2, Q2〉 ≡ 〈N2, X2
2n − Y 2

2n〉

18 〈M1, X1
2n〉 ∈ A ∧ 〈M1, Y 1

2n〉 ∈ B ∧M1 ≡ 2 ·N1 〈N1, Q1〉 ≡ 〈N1, X1
2n − Y 1

2n〉 〈M1, X3
2n〉 ∈ A ∧ 〈M1, Y 3

2n〉 ∈ B ∧M1 ≡ 2 ·N1 〈N1, Q3〉 ≡ 〈N1, X3
2n − Y 3

2n〉 〈M2, X2
2n〉 ∈ A ∧ 〈M2, Y 2

2n〉 ∈ B ∧M2 ≡ 2 ·N2 〈N2, Q2〉 ≡ 〈N2, X2
2n − Y 2

2n〉

19 〈M1, X1
2n〉 ∈ A ∧ 〈M1, Y 1

2n〉 ∈ B M1 ≡ 2 ·N1 〈M1, X3
2n〉 ∈ A ∧ 〈M1, Y 3

2n〉 ∈ B M1 ≡ 2 ·N1 〈M2, X2
2n〉 ∈ A ∧ 〈M2, Y 2

2n〉 ∈ B M2 ≡ 2 ·N2

20
〈M1, X1

2n〉 ∈ A

〈N ′1, QA
1 〉 ∈ A

〈M1, Y 1
2n〉 ∈ B

〈N ′1, QB
1 〉 ∈ B

〈M1, X3
2n〉 ∈ A

〈N ′1, QA
3 〉 ∈ A

〈M1, Y 3
2n〉 ∈ B

〈N ′1, QB
3 〉 ∈ B

〈M2, X2
2n〉 ∈ A

〈N ′2, QA
2 〉 ∈ A

〈M2, Y 2
2n〉 ∈ B

〈N ′2, QB
2 〉 ∈ B

1 2 3
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