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Abstract: In this paper it is argued that the understanding of Brouwer
as replacing truth conditions with assertability or proof conditions, in
particular as codified in the so-called Brouwer-Heyting-Kolmogorov
Interpretation, is misleading and conflates a weak and a strong no-
tion of truth that have to be kept apart to understand Brouwer prop-
erly: truth-as-anticipation and truth-in-content. These notions are ex-
plained, exegetical documentation provided and semi-formal recursive
definitions are given.

Consider the sequence γ = {cn}, where cn is defined to be equal to (−1/2)k1

if k1 is smaller than n and the sequence 0123456789 appears for the first
time in the decimal expansion of π with the 0 at the kth1 decimal position,
and equal to (−1/2)n if there is no such k1. Then define r to be limn→∞ cn.

Brouwer [1924a] claims that the proposition that r equals 0, is neither
true nor false. It would only be true if we had a proof that there are no
0123456789-sequences in the decimal expansion of π, and it would only be
false if we knew of such a sequence.1 Assuming that it is true or false in the
absence of such knowledge amounts to assuming that the decimal expansion
of π has extra-mental existence.

When making such a claim, which notion of truth does Brouwer apply as
his alternative to the rejected Platonic notion? The answer to this (purely
exegetical) question is the goal of this paper. (Or perhaps more accurately:
it is an attempt at a rational reconstruction.)

Before I present what I think is the correct interpretation of Brouwer, I
will discuss and reject three other interpretations that have been made or
could be made of his writings. I do not do this with a merely negative aim,
but because my interpretation combines elements from those three and is,
therefore, best understood and motivated by comparison with them. The
first interpretation is that what is true can only be so because of what has
actually been constructed. The second is that not only actual but also all
potential constructions can serve as truth makers. (These first two options
are quite näıve and are not serious contenders but they serve the purpose of
stage setting.) And the third is that truth is equated with proof. This third

1We actually do today: there is a 0123456789-sequence beginning at decimal number
17,387,594,880 as well as at several other, later positions [Wells, 1986]. But as Brouwer
[1951b] points out there will probably always be an ample supply of other examples that
can be used instead. Hence, this is not really relevant, so we will just stick to Brouwer’s
example.
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option has now become so entrenched as an interpretation of Brouwer that
a word of warning is in order so as to forestall misunderstandings where
it is read into the first two: the notion of proof plays no role in the first
two interpretations and “construction” is not to be read as “construction
of a proof”. Rather, “constructions” are of the mathematical objects and
relations between them that mathematical theories are about, not of the
proofs and theorems about them.

1 Actual constructions, potential constructions and
BHK

In several places Brouwer gives rather explicit answers to the question about
what notion of truth he employs – answers which are nonetheless puzzling.
Here is one:

[T]ruth is only in reality, i.e. in the present and past experiences
of consciousness. Amongst these are things, qualities of things,
emotions, rules (state rules, cooperation rules, game rules) and
deeds (material deeds, deeds of thought, mathematical deeds).
But expected experiences, and experiences attributed to others
are true only as anticipations and hypotheses; in their contents
there is no truth. [Brouwer, 1948, 1243, emphasis original]

So Brouwer’s official theory is that truth consists in correspondence with
actual constructions. However, at first sight it does not seem that he ad-
heres strictly to this credo. One thing that seems to be at odds with it is his
claim that as soon as the subject has a decision procedure for a given propo-
sition then tertium non datur holds for it. Sticking to actual constructions
as truth-makers2, one should presumably say that only when the decision
procedure has been executed does the proposition gain a truth value. An-
other thing is that the theorems that he states are typically like classical
theorems in that they cover an infinity of cases even though, obviously, not
all these cases can have been realized as actual constructions. So it seems
that Brouwer often relies on potential rather than just actual constructions.

If that is the case then it appears easy to explain why Brouwer has felt
the pressure to do so. The claim that the “actualist” position commits you
to, that the proposition that, say, the one millionth decimal of π is 1, was
not true in Brouwer’s time but has only become so since, is very weird. It
is weird because, by Brouwer’s own admission, it is determined in advance
what the decimals of this lawlike sequence are.3

2In my analysis of Brouwer I will make extensive use of the concept of truth-makers,
which was not available to Brouwer himself, as it only – as far as I know – dates back to
[Mulligan et al., 1984].

3Brouwer [1948, 1237] also uses the word “predeterminate” for “lawlike”. He also
writes that the “freedom in the generation of [a free choice sequence] may at any stage
be completely abolished [. . . ] by means of a law fixing all future [terms] in advance”
[Brouwer, 1954, 7].
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So is the account of truth which Brouwer actually subscribes to, that what-
ever is determined in advance is true, i.e., that predetermined potential
constructions are sufficient for truth? No, Brouwer does not go nearly far
enough in this direction to warrant such an interpretation.4 For it is also
determined in advance whether there is a k1, and if there is, what value it
has. So by that standard it would be false, atemporally, that the limit of γ
equals 0.

Framing the same point in terms of the popular example of Goldbach’s Con-
jecture, it cannot be the case that it is fixed in advance for each n whether
it would be a counterexample to the conjecture, but not fixed in advance
whether such an n can be constructed. If we let P stand for the property of
being a Goldbach number and n range over the even integers greater than 2,
Brouwer claims that ∀n(P (n)∨¬P (n)) is true but that ∀nP (n)∨¬∀nP (n)
is not. That difference cannot be accounted for if truth is a matter of prede-
termined potential constructions alone, for the two propositions are about
the same potential constructions.5

Consistent reliance on potential constructions would make all truths about
lawlike sequences timeless and independent of the subject’s knowledge and
would therefore be in conflict with the temporality of Brouwerian truth and
in particular with the role played by possession of algorithms; when the
subject acquires a means to “judge” a proposition, i.e., comes up with a
decision procedure for it, tertium non datur becomes valid for it [Brouwer,
1952, 141].

Neither the actual existence of constructions nor the mere possibility of
constructions can be made out to be Brouwer’s criterion for truth. Rather,
he seems to be somewhere in between, relying on potential constructions
when the subject has knowledge of its finitude in advance and otherwise
insisting on actual constructions. That difference cannot be explained with
mentalism alone. So if this intermediate position is to be seen as more than
an arbitrary compromise between conflicting sources of pressure, there must
be some more fundamental truth criterion in play which can explain the
unequal demands on what kind of existence of constructions is required.

Partly as an answer to this challenge, it has become common to inter-
pret Brouwer as equating truth with existence of proof, or as it has also
been formulated, to replace truth conditions with assertability conditions
[Raatikainen, 2004]. There are certainly good textual reasons to believe
that proofs play at least some role in Brouwer’s conception of truth. For

4Even though he also commits explicitly to this second interpretation in writing, as
he did for the first: in his own copy of his dissertation he changed “bestaan in wiskunde
betekent: intüıtief zijn opbebouwd” to “bestaan in wiskunde betekent: intüıtief op te
bouwen”, that is, “existence in mathematics means: to have constructed intuitively” to
“existence in mathematics means: to be constructible intuitively” [van Dalen, 2001, 134,
footnote f, emphasis original].

5One way to analyze the concept of predetermination is with a counterfactual: if at
time t2 the nth decimal of π is found to be m, then for any t1 < t2 it would have been
the case that if an agent had constructed the nth decimal at t1, it would have been m.
Does Brouwer deny this as the Kripkensteinian rule-following skeptic [Kripke, 1982] does?
I do not think so. He just refuses to recognize such facts of predetermination as truths,
presumably because he cannot locate a truth-maker for it within his anti-realist ontology.
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one thing, the notion of proof is employed in some definitions of concepts
which we would not normally consider to be about proofs (i.e., not a concept
belonging to proof-theory):

Two mathematical entities are called different, if their equality
has been proved to be absurd. [Brouwer, 1952, 142, emphasis
added]

A second reason is that the following two quotations are so alike that it
is natural to interpret Brouwer as considering them nothing but rhetorical
variations of each other even though one has “true” where the other has
“proved to be true”, suggesting equivalence between them:

Correctness of an assertion then has no other meaning than that
its content has in fact appeared in the consciousness of the sub-
ject. We therefore distinguish between:

1. true

2. impossible now and ever

3. at present neither true nor impossible

a. either with, or

b. without the existence of a method which must lead to
either 1. or to 2. [Brouwer, 1951a]

[I]n mathematics no truths could be recognized which had not
been experienced, and that for a mathematical assertion a the
two cases formerly exclusively admitted were replaced by the
following four: 1. a has been proved to be true; 2. a has been
proved to be false, i.e. absurd ; 3. a has neither been proved to be
true nor to be absurd, but an algorithm is known leading to a
decision either that a is true or that a is absurd; 4. a has neither
been proved to be true nor to be absurd, nor do we know an
algorithm leading to the statement either that a is true or that a
is absurd. [Brouwer, 1955, 114, emphasis original]

It is clear that proofs are in some way constitutive of Brouwer-truth. Nev-
ertheless, it cannot be correct to interpret him as identifying truth and
existence of proof. For that is exactly what he [1954] forcefully criticizes the
formalists for doing; they render mathematics meaningless by doing away
with the content that is being proved. The Brouwerian would ask rhetor-
ically: if there is nothing beyond the proofs, then what is it that is being
proved? Trying to reduce truth to proofs is to put the cart before the horse;
there has to be something more basic that proofs can be about. To prove
something must be to show that it is true. If there is no independent notion
of truth, then the concept of proof is taken as basic, and intuitionism is very
similar to formalism.
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Also, insofar as existence of proofs is admitted as partially constitutive of
truth in Brouwer’s view, it must be with a careful understanding of what
proofs are. They cannot be understood as linguistic entities and they cannot
even be something that is “built” from logic, for mathematics is independent
of, and prior to, language and logic, according to an often repeated claim of
Brouwer’s.6

An attempt at a more precise version of the interpretation of Brouwer as
equating truth with existence of proofs is what has become known as the
“Brouwer-Heyting-Kolmogorov interpretation” or “BHK interpretation” for
short. It gives the meaning of the logical connectives and quantifiers by
recursively stipulating what counts as a proof of a sentence: a proof of φ∧ψ
consists of a proof of φ and a proof of ψ (and the conclusion); a proof of φ∨ψ
consists of a proof of φ or a proof of ψ; a proof of φ→ ψ consists of a method
for converting any proof of φ into a proof of ψ; a proof of ¬φ consists of a
method for converting any proof of φ into a proof of a contradiction; a proof
of ∃xφ(x) consists of an object d, a proof that d is in the given domain and
a proof of φ(d); and a proof of ∀xφ(x) consists of a method for converting
any object d in the domain into a proof of φ(d).

(To this story must be added an account of what a proof of an atomic
sentence is. Such accounts are specific to the mathematical theory under
consideration. Arithmetic can be formalized in such a way that the only
atomic sentences are numerical equations, and then a proof of such a sen-
tence of the form a = b can be specified as something that begins with
identity statements of the form a = a.)

There are two specific problems for the BHK interpretation in addition to
the already mentioned more general problems of the truth=proof interpreta-
tion. The first is that the interpretation of the disjunction is not faithful to
Brouwer. He has it that tertium non datur already holds7 for a proposition
φ when the subject has a decision procedure for it, also prior to execut-
ing that procedure and thereby obtaining a proof of one of the disjuncts
of φ ∨ ¬φ. But the BHK interpretation does not allow us to assert that
disjunction without being in a position to assert one of the disjuncts.

The second is, as Dummett [2000, 269–270] points out, that the definition,
as it stands, is impredicative, because of the clauses for the conditional and
the universal quantifier: A proof of φ → ψ is a certain operation on all
possible proofs of φ. We have no guarantee that we have a full grasp of
what counts as a proof of φ before we have a full grasp of what counts as a
proof in general, but that is just what is being defined.

I think the problem can be presented most forcefully in the form of a tri-
lemma. Either (1) it is fixed in advance of the recursion on the complex
sentences what counts as a proof of an atomic sentence or (2) it is not.8

6See, e.g., [1907, chapter 3], [1947] and [1952].
7In his [1952] Brouwer writes that in this case “application of the principle of the

excluded third is permissible”; in his [1908] that it is “reliable as a principle of reasoning”
(emphasis added).

8The case of arithmetic belongs, as explained, in the former category, but it is not clear
where other mathematical theories belong.
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The first case can be subdivided into a case (1a) where these prefixed proofs
include some that contain, as lines in the proofs, complex sentences, and (1b)
where they do not. In all three cases there are unacceptable consequences
which can all be exemplified with a proof concluding with modus ponens,
i.e. a proof where the antepenultimate line is φ, the penultimate is φ → ψ
and the final line is the atomic sentence ψ. In case (1a) this proof is valid
independently of the BHK recursion, so the proof stripped of its last line is
a proof of φ→ ψ independently of the BHK recursion, making it redundant.
In case (1b) this cannot be a proof of ψ; so no atomic sentence can be proved
by modus ponens, which is absurd. And in case (2) it is consistent with the
BHK interpretation to stipulate that ψ can be proved from φ no matter
what these sentences are, for we can just claim that the mentioned proof is
a valid proof for ψ if we also claim that the method to any proof of φ, add
a line containing φ → ψ and then a line containing ψ is a proof of φ → ψ,
for that is then the method for converting any proof of φ into a proof of ψ
required by the BHK interpretation of the conditional.

Dummett [1978b, 2000] has tried to improve on this situation by distinguish-
ing between “canonical proofs” and a weaker notion of proof. Canonical
proofs are proofs that never proceed via formulae that are more complex
than the premises and conclusion. On the other hand, informal proofs or
“demonstrations”, the kind of proofs that you typically find in a mathe-
matical paper, are proofs that, in principle, provide a method for obtaining
a canonical proof. A disjunction may therefore be assertable by virtue of
a demonstration, which, when converted into a canonical proof, would not
only prove the disjunction but also one of the disjuncts. The BHK interpre-
tation is then taken to define the weaker notion of proof, while presupposing
only the notion of canonical proofs, and then the recursion is well-founded.

However, even if this works as a solution to the specific problems for the BHK
interpretation, it does not resolve the more general problems of interpreting
Brouwer as identifying truth and existence of proof. (But, it should be noted,
it was not intended as an exegetical thesis by Dummett.) Just splitting the
notion of proof into two different notions of proof cannot do that job. The
reason I have nevertheless discussed the idea is that it has similarities to the
exegetical thesis I will propose. For, according to this, Brouwer effectually
splits the notion of truth into a strong and a weak variant.

2 Two-truths interpretation

The key, I believe, is to be found in one of the quotations above, namely the
first one in this paper: expected experiences are true only as anticipations;
in their contents there is no truth. Here is a distinction between a strong
notion of truth, truth-in-content, and a weaker, truth-as-anticipation. (I will
use the abbreviation “TIC” for “truth-in-content” and also, ambiguously,
for the adjective “true-in-content”. “Truth-as-anticipation” and “true-as-
anticipation” are abbreviated as “TAA”.)

The strong notion is what allows Brouwer to claim that “truth is only in
reality”, i.e., TIC is correspondence to an actual construction. Not only is
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an object, a, a construction, so is a property-ascription, P (a), and a reduc-
tion to absurdity, ¬P (a) [Brouwer, 1907]. To take a simple example (not
Brouwer’s own), a natural number n is a construction consisting of n ele-
ments; the property-ascription n is the sum of two primes is a one-to-one
and onto mapping of these n elements to the elements of two primes; and
the reduction to absurdity of the same property-ascription would consist in
attempted constructions of such mappings between the n elements and all
pairs of two primes smaller than n that are executed as far as possible until
“the construction no longer goes” (p. 127). These mappings are themselves
constructions, described by Brouwer [1908] as the predicate being “embed-
ded” into the object.

If, on the other hand, the subject employs (intuitionistic) logic to deduce
new truths from existing truths, the new truths are not necessarily TIC.
It is just that the subject now knows how to make them true. He has an
algorithm which will produce the truth-maker for the sentence and he knows
in advance of executing it, that it will have that result. In other words, he
can anticipate the TIC of the sentence; it is TAA:

[T]here is a system of general rules called logic enabling the sub-
ject to deduce from systems of word complexes conveying truths,
other word complexes generally conveying truths as well. [...]
This does not mean that the additional word complexes in ques-
tion convey truths before these truths have been experienced [...]
[Brouwer, 1948, 1243, emphasis original]9

Let us consider a few examples. The proposition that 17 is an odd number,
is TIC when a mapping between 17 and two copies of 8 and a unit has been
constructed. The proposition that 1010 + 1 is an odd number, however, is
not TIC unless the subject has been extremely industrious, but it is TAA
if the subject knows how to construct that number and a mapping between
it and two copies of 5 · 109 and a unit. Further, assuming that our subject
is not an expert on prime numbers, “1010 + 1 is prime” is neither TIC nor
TAA. He does have an algorithm for deciding the proposition (let us assume
that he knows that much), but he does not know the result of executing it
in advance. That brings us to the case of complex sentences: “1010 + 1 is
prime or 1010 + 1 is composite” is TAA, for the subject has an algorithm
which he knows will make the sentence TIC. He just does not know how; he
does not know which disjunct will become TIC, so neither of the disjuncts
are TAA.

Based on this discussion, we can give the first part of a more precise, recur-
sive formulation of when a sentence is TIC and TAA, respectively:

� P (a) is TIC iff P has been embedded into a;

� ¬P (a) is TIC iff all options for embedding P into a have met an
obstacle;

9See also [Brouwer, 1952, 141].
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� φ ∨ ψ is TIC iff φ is TIC or ψ is TIC (and the conclusion has been
drawn);

� P (a) is TAA iff an algorithm has been made which can make P (a)
TIC;

� φ ∨ ψ is TAA iff an algorithm has been made which can make either
φ TAA or ψ TAA.

Here “algorithm” means a method that not only is finite and would have
the stated result if executed, but is known to the subject to be finite and
to lead to that result. The notion of “embedding” is one that I will leave
relatively vague as it is. Let me just make it clear that the idea is that TIC
is an ontological rather than epistemological notion; when the subject has
made a sentence TIC, he has not verified that it is true, he has made it true.
(TAA on the other hand is connected with verifications.)

The clauses for conjunction are obvious, as are the generalizations of the
clauses for the atomic sentences to predicates of arity more than 1:

� φ ∧ ψ is TIC iff φ is TIC and ψ is TIC;

� φ ∧ ψ is TAA iff an algorithm has been made which can make both φ
and ψ TAA;

� P (a1, . . . , an) is TIC iff P has been embedded into 〈a1, . . . , an〉;

� ¬P (a1, . . . , an) is TIC iff all options for embedding P into 〈a1, . . . , an〉
have met an obstacle;

� P (a1, . . . , an) is TAA iff an algorithm has been made which can make
P (a1, . . . , an) TIC.

For existential quantification the clauses are analogous to those for disjunc-
tion:

� ∃xφ(x) is TIC iff φ(a) is TIC for some object a in the domain;

� ∃xφ(x) is TAA iff an algorithm has been made which can construct
an object a in the domain and make φ(a) TAA.

The special BHK-interpretation of the universal quantifier and conditionals
fits perfectly into the present interpretation on the side of TAA:

� ∀xφ(x) is TAA iff an algorithm has been made which can turn any
object a for which it is TAA that a is in the domain, into the TAA of
φ(a);

� φ→ ψ is TAA iff an algorithm has been made which can turn TAA of
φ into TAA of ψ.
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Truth-in-content is an extensional notion, and therefore the clause for TIC
of a universally quantified sentence must be as follows:

� ∀xφ(x) is TIC iff all the objects a in the domain have been constructed
and φ(a) is TIC for them all.

This has the consequence that when the domain is infinite, a universally
quantified sentence cannot be TIC, only TAA.

It is a more delicate matter what to say about TIC of conditionals. One
thought would be that intuitionistic conditionals can only be understood in
the algorithmic sense of the BHK-interpretation. In that case, TIC should
never be attributed to conditionals. Insofar as it should, being an extensional
notion, it seems most reasonable to understand it in terms of the classical
definition of the conditional:

� φ→ ψ is TIC iff ¬φ is TIC or ψ is TIC.

Adopting this clause implies accepting the inference from ¬φ to φ → ψ for
any φ and ψ. There is no indication in Brouwer’s writings that he does; see
[van Atten, 2009] (where it also noted that Heyting, Kolmogorov, Troelstra,
van Dalen, Martin-Löf and Dummett do accept it).

The TIC of ¬φ has only been defined for atomic φ so far, which must be
remedied. But again, the extensionality of TIC, i.e. the requirement of
correspondence with actual constructions, settles the issue unequivocally.
A negation of a complex sentence being TIC must be understood in terms
of the classical equivalence with a sentence where negations have narrower
scope, so as to be reducible to the already defined TIC of atomic sentences
and negations of atomic sentences:

� ¬¬φ is TIC iff φ is TIC;

� ¬(φ ∨ ψ) is TIC iff ¬φ is TIC and ¬ψ is TIC;

� ¬(φ ∧ ψ) is TIC iff ¬φ is TIC or ¬ψ is TIC;

� ¬(φ→ ψ) is TIC iff φ is TIC and ¬ψ is TIC;

� ¬(∃xφx) is TIC iff all the objects a in the domain has been constructed
and ¬φa is TIC for them all;

� ¬(∀xφx) is TIC iff ¬φa is TIC for some object a in the domain.

That just leaves us with TAA of negated sentences to be defined:

� ¬φ is TAA iff an algorithm has been made which can turn TAA of φ
into some construction and the obstruction of the same construction.
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This interpretation of Brouwer is, in a sense, a combination of the three
proposed interpretations I discussed above: truth as actual construction,
truth as potential construction and truth as proof. Both TIC and TAA
consist of actual constructions. TIC consists in the actual construction of
“things” and “qualities of things” in the language of the quotation at the
beginning of this paper, and TAA consists in the actual construction of
“rules”. As such, both notions of truth are tensed. On the other hand,
the admission of the weaker10 notion of truth, TAA, is due to a reliance
on potential constructions. It is a trust in the possibility of, to a certain
extent, predicting the properties of not yet effected constructions which
justifies anticipated-truth when there is not yet truth in the strong ontic
sense. And finally, TAA is identified with the existence of proof. But it
is in a sense of proof where it does not necessarily have to be a linguistic
entity. Rather, an intuitionistic proof is a method for producing the truth-
maker of the given sentence (although the subject needs to know that the
method does that, and that knowledge may be the result of a proof in the
traditional sense of the word). In this way, TAA is grounded in TIC. TAA of
complex sentences is defined in terms of TAA of simpler sentences, and TAA
of atomic sentences is defined in terms of TIC. Thus, there is no problem of
impredicativity as in the BHK interpretation.

That a sentence is TAA means that it would become TIC if the algorithm
in question were executed along with the algorithms corresponding to sim-
pler sentences thereby produced and the. . . etc. down to atomic sentences.11

However, when there are universal generalizations or negated existential
claims over infinite domains involved, that task is impossible, as it consists
in the execution of an infinity of algorithms. Still, the grounding of TAA in
TIC is not thereby nullified, for any given finite part of the infinite conjunc-
tion, which such a sentence amounts to, can be realized as TIC.

The present interpretation accommodates both the [1951a] and the [1955]
quotations above, without having to resort to the problematic “reduction”
of truth to existence of proof. The four possibilities for the status of an
assertion a in the former quotation are (1) that a is TIC, (2) that ¬a is
TIC, (3a) that neither a nor ¬a is TIC but a ∨ ¬a is TAA, and (3b) that
neither a nor ¬a is TIC and a∨¬a is not TAA. In the latter quotation, the
four possibilities distinguished are (1) that a is TAA, (2) that ¬a is TAA, (3)
that neither a nor ¬a is TAA but a∨¬a is TAA, and (4) that neither a nor
¬a nor a∨¬a is TAA. These are different categorizations but they both give
four possibilities which are mutually exclusive and collectively exhaustive.

With this interpretation we can also explain how Brouwer can deny in the
π example that it was true in his time that a k1 exists without denying the
predetermination of the sequence of decimals of π. For any claim about the

10For any sentence φ, φ being TIC implies that φ is TAA. The TAA-making algorithm
is the “empty” algorithm that is vacuously executed.

11In the case of universally quantified sentences, conditionals, and negations there are
prerequisites for doing so: for universally quantified sentences one would need to have
constructed the entire domain; for conditionals (assuming that the above clause for TIC
of such is adopted) one would need the TAA of the antecedent; and for negations one
would need, per impossibile, the TAA of the negated sentence.
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value of a specific decimal, the subject can anticipate finding the answer, in
the sense that he knows that he will find it within a preknown number of
construction steps if he goes through the appropriate procedure. If he starts
looking for a k1 by searching through the decimals one by one, he cannot
anticipate finding one, he can merely hope for it.

Even though the issue has already been touched upon, let me explicate the
consequences for the semantics of disjunctions. The case of TIC is simple:
if a disjunction is TIC then at least one of the disjuncts is too. But a
disjunction can be TAA without any of the disjuncts being so. In particular
τ ∨ ¬τ is TAA if the subject has a decision procedure for τ , but if he does
not know in advance on which side the procedure will come out, neither τ
nor ¬τ will be TAA. This allows Brouwer to state that

Each assertion τ of the possibility of a construction of bounded
finite character in a finite mathematical system furnishes a case
of realization of the principle of the excluded third [Brouwer,
1948, 1245]

For in a finite system the procedure “try all possibilities” is a decision pro-
cedure; it will result in either τ or ¬τ becoming TIC and a fortiori TAA.
So TAA does not distribute over disjunctions, but it is, so to speak, dis-
tributable over disjunctions with a little work. That is, a disjunction being
TAA at a given point in time does not imply that either of the disjuncts
is TAA at that time, only that one of the disjuncts can be made TAA by
executing the algorithm that makes the disjunction TAA.

We are not in possession of a decision procedure for Goldbach’s Conjecture,
∀nP (n), and hence ∀nP (n) ∨ ¬∀nP (n) is not TAA. But for each n, we do
have such a procedure for P (n), making P (n)∨¬P (n) TAA. So the algorithm
consisting of “plugging” the given n into that procedure is the algorithm
which turns any object in the domain N into the TAA of P (n) ∨ ¬P (n),
required for ∀n(P (n) ∨ ¬P (n)) being TAA.

It may also be worth explicating why the clause for TAA of a disjunction does
not read “φ∨ψ is TAA iff an algorithm has been made which can make either
φ TIC or ψ TIC”. Let again τ be a decidable but undecided proposition.
Then this proposition, where n ranges over the natural numbers, is TAA (for
anyone in possession of the decision procedure and aware of the following):
∀n(τ ∧n = n)∨∀n(¬τ ∧n = n). By deciding τ , one of the disjuncts becomes
TAA but not TIC, for the latter would presuppose a completed construction
of all the natural numbers.

3 An equivalence in propositional logic

In this section, and the following two sections, I will confront the interpre-
tation with three examples of Brouwerian mathematics to show how it can
account for them. The three examples are those that van Atten in his [2012]
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brings forward in defense of the claim that the “B” does rightly belong in
the name “BHK-interpretation”, and I have copied his subsection headings.

The first is Brouwer’s proof of the logical law ¬¬¬A ↔ ¬A. This proof
van Atten uses (sections 2.2 and 3.1.1) to argue against an understanding
of conditionals A → B as meaning just “A ∧ B with the extra information
that the construction for B was obtained from that for A” (which would be
a consequence of the truth-as-actual-construction interpretation12):

The argument begins by pointing out that A → B implies that
¬B → ¬A [. . . ] It would not have been possible for Brouwer
to make this inference if at the time it would have been among
his proof conditions of an implication to have a proof of the
antecedent, as then a proof of A → B would lead to a proof
of B and thereby make it impossible to begin establishing the
second implication by proving its antecedent ¬B. [van Atten,
2012, section 3.1.1]

This is not an argument specifically for the BHK-interpretation, only against
the mentioned alternative. Its conclusion is also consistent with the present
interpretation, where ¬¬¬A ↔ ¬A is TAA. Or rather: ¬¬¬A ↔ ¬A is
TAA for anyone who has understood the following proof (or one like it), as
it provides a method of turning the TAA of ¬¬¬A into the TAA of ¬A and
vice versa:

We first prove the TAA of A→ ¬¬A. That is done by providing a method
of turning TAA of A into TAA of ¬¬A. So assume that A is TAA. TAA
of ¬¬A is an algorithm for turning TAA of ¬A into a construction and the
obstruction of the same construction. So assume also that ¬A is TAA. Use
that to turn the TAA of A into a construction and the obstruction of the
same construction. Discarding the second assumption, we have the TAA of
¬¬A. And by also discarding the first assumption, the TAA of A → ¬¬A
is reached.

Second, we prove that the TAA of A → B implies the TAA of ¬B → ¬A.
Assume the antecedent and the TAA of ¬B. The following is an algorithm
for turning the TAA of A into a construction and the obstruction of the
same construction, i.e. the TAA of ¬A: use the first assumption to turn the
TAA of A into the TAA of B and then use the second assumption to turn
that into a construction and the obstruction of the same construction.

A special case of the first proposition proved is that ¬A → ¬¬¬A is TAA.
And the two propositions together imply the TAA of ¬¬¬A → ¬A. The
algorithm which makes ¬¬¬A↔ ¬A TAA is then simply the concatenation
of these two algorithms.

This example is one that the BHK-interpretation and the “two truths” in-
terpretation can account for equally well. I will argue that the next two are
some where the latter does better than the former.

12And a possible interpretation of the TIC of A→ B, instead of the one above.
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In this section I have considered a single logical theorem. But, the more
general claim that this interpretation is complete with respect to intuition-
istic first-order predicate logic is also true. It is true in the following sense:
for each axiom and inference rule of that logic there is a certain (quite sim-
ple) proof, such that the axiom/inference rule is TAA for anyone who has
understood the proof.

4 The proof of the Bar Theorem

The next example considered by van Atten is the proof of the Bar Theorem
[Brouwer, 1924b, 1927, 1954, 1981], which can be stated thus: if B is a
decidable bar on a spread, then B contains a well-ordered thin bar. I will
begin this section by explaining the terms used in this formulation, before
interpreting Brouwer’s proof of, and his comments on, it in the light of the
two truths. As this will get somewhat abstract and perhaps difficult to
follow, the section will conclude with a toy example to make matters more
concrete.

For present purposes we can define a spread as a species of tuples of natural
numbers (among which we count the empty tuple) which satisfies the fol-
lowing. First, it is decidable for any tuple whether or not it is in the spread.
Second, if 〈a1, . . . , an〉 is in the spread then so is 〈a1, . . . , an−1〉. Third, if
〈a1, . . . , an〉 is in the spread then there exists (in the intuitionistic sense of
the word) a natural number an+1 such that 〈a1, . . . , an, an+1〉 is also in the
spread.

A tuple 〈a1, . . . , an〉 is called an ascendant of a tuple 〈a1, . . . , an, . . . , an+m〉
in the spread, and the latter is called a descendant of the former. If m = 1
the modifier “immediate” may be added.

It is helpful mentally to picture a spread as a tree in which each tuple
is a node with all its immediate descendants as nodes immediately below
it. An infinite route from the root, i.e. the empty tuple, downwards then
corresponds to a choice sequence. In that case I will say that the choice
sequence is in the spread.

A bar is a subspecies of a spread such that every choice sequence in the
spread has an initial segment (one of the nodes it goes through) in that
subspecies. A bar can be pictured as an area stretching the entire breadth
of the tree so that every choice sequence must pass through it. It was
discovered by Kleene and Vesley [1965] that for the theorem to hold it must
be assumed that the bar is decidable, which is to say that it is decidable
whether a given tuple is in it or not.

For the purpose of being a bar, such an area does not need to be deeper
than one node; hence the notion of a thin bar which is a bar such that for
any tuple in it, no ascendant or descendant of it is also in the bar.

Well-orderings are defined inductively. A one-element species is a well-order-
ing, and if A0, . . . , An or A0, . . . are disjoint well-orderings, then their union,
equipped with the following ordering, is also a well-ordering: x < y if either
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x is from an Ai and y is from an Aj such that i < j or x and y are from
the same Ai and ordered x < y therein. The Ais are called “constructional
subspecies” of the resulting well-orderings.

For this analysis, there is one specific detail about the ontology of well-
orderings that is important. Brouwer [1981, 44] demands that the Ais are in
the “available stock” of already constructed well-orderings, before they can
be used to construct a larger well-ordering. This may suggest a demand for
strict “bottom-up” construction, which is misleading. First of all, one should
of course remember that if a well-ordering is constructed out of infinitely
many other well-orderings, then the infinity is potential, so they cannot
all have been previously constructed. It follows that the existence of these
well-orderings must be understood as true-as-anticipation.

In other words, Brouwer accepts that the larger-scale structure is con-
structed prior to the smaller-scale details of that structure. This conclusion
is reinforced by an example from [Brouwer, 1981, 49], where a well-ordering
is constructed with the aid of a fleeing property.13 Pretend that such a prop-
erty is given and let k be the (hypothetical) least natural number with that
property. Further, let Ai be an ω-sequence for i < k but just a one-element
species for i ≥ k. Brouwer takes these Ais to be acceptable building blocks
for a well-ordering. So, not only can the building blocks be constructed after
the house, we can also be largely ignorant about the shape and size of these
building blocks.

This brings us to the end of the explanation of what the theorem says. We
can turn to the interpretation of its proof.

The Bar Theorem has the form of an implication, and the proof turns on
considerations of how possible proofs of the antecedent can be manipulated
into a proof of the consequent. This fits with the BHK-interpretation. But,
what Brouwer means by “proof” in that context is very different from the
normal understanding of the word.14 When his non-standard use of the word
is taken into account, the two truths interpretation can explain Brouwer’s
proof in a way that is more detailed and less prone to misunderstandings
than the BHK-interpretation.

Brouwer writes that any proof of the antecedent can be expanded into a
so-called canonical proof. Such a canonical proof is an infinite (if the part
of the tree “above” the bar is) mental construction with a structure that
is itself a well-ordering. When the word “proof” is taken in the normal
sense, that is a baffling claim.15 How can something persuade us of the
truth of a proposition if it is infinite and therefore unsurveyable? And how

13“A fleeing property is a property which can be proved for any given natural number
either to hold or to be contradictory, whilst neither a number with that property is known,
nor a proof that it is contradictory for every natural number” [Brouwer, 1933]. An example
is (or was; see footnote 1) the property a 0123456789-sequence begins at the nth decimal
of π.

14See [Sundholm and van Atten, 2008] regarding Brouwer’s use of the words “proof”,
“demonstration”, and “argument” and their equivalents in German and Dutch.

15For example, relying on a truth=proof interpretation of intuitionism, Epple [2000]
comes to the conclusion that the proof of the Bar Theorem does not live up to Brouwer’s
own epistemological standards.
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can Brouwer be certain that a proof must be expandable into the form he
describes? The word “proof” (or “demonstration”) must be understood
differently:

Intuitionistically, to give a demonstration of a mathematical the-
orem is not to produce a certain linguistic object, but to produce
a mental mathematical construction (or a method to obtain one,
which method is of course also a mental mathematical construc-
tion) that makes the corresponding proposition true. Therefore,
the requirement, for a demonstration that the consequence

A is true ⇒ B is true

holds, of a method that transforms any demonstration that A is
true into one that B is true, is really the requirement of a method
that transforms any mathematical construction that makes A
true into one that makes B true. [Sundholm and van Atten,
2008, 61]

This I believe to be correct, but also easy to misunderstand: is a “mathe-
matical construction that makes A true” not an infinite structure which can
never be completed and thereby ready for being transformed into a math-
ematical construction that makes B true? With the present interpretation,
with its distinction between two ways that A and B can be true, we can
make this more precise and avoid the confusion. A proof of the implication
is a method for transforming the TAA of A into the TAA of B, not a method
to transform the actually infinite structure that would make A TIC into the
actually infinite structure that would make B TIC.

Getting to the specific details of the proof of this theorem, the antecedent
says, when interpreted in the appropriate intuitionistic way, that when I
construct a choice sequence in the spread, I will at some point construct
an initial segment that is in the bar; that I will be able to determine that
the initial segment is in the bar, when it is; and that I know in advance
that it will happen within a calculable number of construction steps.16 The
antecedent is of the ∀∃-form; for each choice sequences in the spread, there
exists an initial segment of it that is in the bar. So the antecedent being
TAA means that for any given choice sequence, an initial segment of it
that is in the bar can be constructed, i.e., that the instance of the universal
generalization for the specific choice sequence can be made TIC. It is hopeless
to expect that we could know what any possible proof, in the normal sense
of that word, that could make that antecedent TAA would look like, but
it is trivial to see how this TIC is accomplished: just construct the terms
of the choice sequence one after another, and each time run the decision

16The last bit is not precise: “the algorithm in question may indicate the calculation
of a maximal order n1 at which will appear a finite method of calculation of a further
maximal order n2 at which will appear a finite method of calculation of a further maximal
order n3 at which will appear a finite method of calculation of a further maximal order
n4 at which the postulated node of intersection must have been passed. And much higher
degrees of complication are thinkable.” [Brouwer, 1954, 13]
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procedure for bar-membership on the resulting initial segment. The infinite
mental construction, that Brouwer misleadingly calls a canonical proof, is
the (unaccomplishable) TIC of all the instances, i.e. of the antecedent.

Therefore, what Brouwer means by “canonical proof” is very different from
how Dummett understands the term. The reasoning that makes the subject
know in advance of constructing a choice sequence, that it will meet the
bar, is not the thing that can be transformed into a canonical form. Rather,
the canonical form is the imagined infinite result of applying an ability
to construct a certain kind of objects (choice sequences hitting bars) in
all possible ways, and that ability can be transformed into an ability to
construct another kind of objects (well-orderings).

Let me elaborate in a way that brings us closer to Brouwer’s own formula-
tions. He calls an element of the bar a “secured” node, while a node above
is “unsecured” but is “securable” when it is established that all choice se-
quences through it hit a secured node. The securability of a node is ac-
complished through induction from below; if all the immediate descendants
of a given node are securable, then that node is securable. That is the in-
duction step and is called an “elementary inference”. The securability of
nodes high up in the tree, in particular the root, is reached through re-
peating such steps; if the tree is large enough, infinitely many of them. In
his formulations Brouwer indulges in the fantasy that we could actually go
through the entire construction process, bottom-up, but of course he should
not be interpreted literally; it is a mere façon de parler. Actually, we can
only construct finitely many nodes, top-down, and must have some means,
independently of actually constructing all the nodes that contribute to their
securability, of knowing that all choice sequences through them will hit the
bar. Such means are of course arguments or, in the normal meaning of the
word, proofs.

The strong similarities between constructing well-orderings and establishing
securability of nodes should now be clear. First of all, the elements of the
thin bar correspond to the one-element well-orderings, and the nodes above
it to the well-orderings that are constructed from smaller well-orderings.
In addition, for both securability and well-orderings, the literal reading of
Brouwer suggests a strict bottom-up constructional process in which a brick
in the wall can only be added, when all the bricks it rests on are in place;
but instead it must be seen as a potentially infinite top-down process where
the status of being securable/being a well-ordering stems from prior knowl-
edge that whatever choice sequence/series of constructional subspecies of
constructional subspecies of constructional subspecies etc. the subject may
actually construct, it will hit the bar/bottom out in a one-element well-
ordering.

The ability that the subject must possess (and know himself to possess) in
order for the antecedent to be TAA is virtually the same as the ability that
makes the consequent TAA. Hence, proving the Bar Theorem is actually
trivial. To prove the TAA of the implication, what is needed is a way of
turning any method for constructing any given “part” of the truth-maker
(“TIC-maker”) of the antecedent into a method for constructing any given
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Figure 1

part of the truth-maker of the consequent. But doing the former is essentially
the same as doing the latter, so any method for the former is almost a method
for the latter, making the “turning” of the one into the other trivial.

Brouwer himself notes this triviality in [1927, original text: 63fn7, English
translation: 460fn7]. That is a comment that can be explained with the
two-truths interpretation, and this explanatory success is, I believe, a point
in its favor.17

Now to the promised toy example. In Figure 1 is the top part of a spread
where the natural numbers allowed are restricted to 1 and 2. It is equipped
with a very simple five element bar which contains a well-ordered three
element thin bar. According to the bottom-up story, the subject should
construct the well-ordered thin bar by first constructing 〈1, 1〉, 〈1, 2〉 and
〈2〉, then constructing (〈1, 1〉, 〈1, 2〉) and finishing with ((〈1, 1〉, 〈1, 2〉), 〈2〉)
(the brackets indicate constructional subspecies). Of course that is quite
feasible in this case, the thin bar being finite. But for the purpose of the
toy example, let us pretend that the subject (for whatever mundane reason)
only has time to do two construction steps, and let that restriction simulate
finitude. Then the existence of the bar and the existence of the well-ordered
thin bar cannot become TIC.

But he can construct any part of the bar, top-down. For instance the first
construction step could result in {〈1〉?, . . .} and the second in {〈1, 2〉, . . .}
(the curly brackets indicate a species (as a bar is) with some intensional
criterion of membership not displayed; the dots indicate that it is incomplete
qua extensional object; and the star indicates that 〈1〉 is not itself an element
of the bar but has to be further developed). The ability to “fill out” any
part of this species and the knowledge that any “starred element” can be
developed into an element of the species no matter which natural number
(here 1 or 2) is chosen in the following steps is what constitutes the TAA of
the antecedent of the Bar Theorem.

17The above discussion could perhaps have been improved in precision with a formal-
ization of the Bar Theorem. But it is not clear to me that such a formalization is possible.
An attempt at a formalization can be found in [Kleene and Vesley, 1965, 52], but there the
consequent is rendered as a principle of backward induction, which I think is unfaithful
to Brouwer.

17



That ability and knowledge is, as noted, virtually the same as the the abil-
ity and knowledge that constitutes the TAA of the consequent. Here the
corresponding top-down construction of a part of the well-ordering has as
its first step (〈1〉?, . . .) and as its second ((. . . , 〈1, 2〉), . . .). The difference is
simply that in the construction of (parts of) the well-ordered thin bar, some
extra structure from the construction process is preserved.

5 Ordering axioms

The last example [van Atten, 2012, section 3.1.3] is concerned with Brouwer’s
definition of so-called “virtual orderings”. These are given through five ax-
ioms, of which one, serving as example, will be sufficient for present pur-
poses; so let us take the simplest, number five: “From r < s and s < t follows
r < t”. The following comment of Brouwer’s, concerning these axioms, is
cited by van Atten as a confirmation of the BHK-interpretation:

The axioms II through V are to be understood in the constructive
sense: if the premises of the axiom are satisfied, the virtually
ordered set should provide a construction for the order condition
in the conclusion.

Van Atten claims that “[t]his is a clear instance of the clause for implica-
tion in the Proof Interpretation”. But the BHK-interpretation renders the
axiom as “any proof of r < s and s < t must be convertible into a proof of
r < t”. However, the operative words in Brouwer’s comment are “satisfied”
and “provide a construction” which are more specific than the ambiguous
“proof”. The “two truths” interpretation captures this comment much bet-
ter. For the TAA of the axiom, i.e.

TAA of (from r < s and s < t follows r < t)

is equivalent to

TAA of (r < s and s < t) can be turned into TAA of r < t,

which is the same as

TAA of (r < s and s < t) can be turned into an algorithm which
makes r < t TIC.

This seems to be a much more reasonable explicitation of the comment.

6 Two-truths versus BHK

In the original sixth-century Indian version of chess, the winning criterion
was actually to capture the opponent’s king. Only later did the Persians
amend the rules so that a player would win already when the king was
made check mate. The original version is the most intuitive and it would be
difficult to imagine that the game could have been invented directly in the
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Persian form; the concept of check mate is difficult to explain except when
done in terms of what would happen in the next round of the game. On
the other hand, the Persian “contraction” of the game makes good sense, as
that final round is trivial and not worth actually executing.

This makes for a nice analogy: TIC is like actually capturing the king, while
TAA corresponds to making the king check mate or, more generally, being
in possession of a winning strategy for the Indian version of the game. If the
existence of such a winning strategy is common knowledge to the players,
then there is no point in actually completing the game – but only by reference
to the possibility of actually capturing the king does the winning strategy
make sense.

It is a problem with Brouwer’s writings (and those of his interpreters) that
this distinction is not made clearly. In chess, the “contraction” of the game
is so simple that anyone presented with the Persian version can easily see the
connection with the Indian version, and therefore think like an Indian while
acting like a Persian. The “contraction” of TIC to TAA is quite complex.
Therefore, an introduction to intuitionism should begin by clearly explaining
TIC and only then move on to the less basic and more abstract concept of
TAA, which is what the proofs in intuitionistic papers make contact with.

The clauses of the BHK-interpretation conflate the two kinds of truth: the
clause for disjunction is only correct for TIC; while the clauses for the con-
ditional and the universal quantifier are only correct for TAA. I think the
BHK-interpretation is comparable to early analysis in that only experts can
interpret the interpretation the right way. Anyone learning about it for the
first time is almost bound to get it wrong.

There is an obvious problem for my interpretation and the critique of BHK
that needs to be considered, namely that Brouwer explicitly endorsed Heyt-
ing’s interpretation:

[W]hile preparing a note on intuitionism for the Bulletin of the
Royal Academy of Belgium, I was pleasantly surprised to see the
publication of a note of my student Mr. Heyting which elucidates
in a magisterial manner the points that I wanted to shed light
upon myself. I believe that after Heyting’s note little remains to
be said. [van Dalen, 2013, 607]

There are a couple of reasons why I do not attribute much weight to this
endorsement. First, given that formalism is not something Brouwer cares
for, he could easily have made that remark without having given it full
consideration. And even if he did, it is a commonplace that you find out that
a given formulation of your position, that you first thought to be perfectly
precise, turns out to be improvable. Also, Brouwer’s stamp of approval
on Heyting’s clauses was within the context of a discussion about whether
intuitionism introduces a third truth value.18 Thus, it is not unreasonable
to assume that the approval is primarily due to the fact that Heyting’s
interpretation was accurate in that particular respect.

18Thanks to Göran Sundholm for pointing this out.
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7 Lawless choice sequences

By qualifying the notion of “algorithm”, we can extend the two-truths in-
terpretation to also cover choice sequences that are not lawlike. Take the
example of a choice sequence α, of which only the first three elements have
been chosen and the sole restriction on future choices is that they must be
natural numbers. Consider the following example sentences:

1. The 17th term of α is 99.

2. The 17th term of α is not 99.

3. The 17th term of α is 99 or the 17th term of α is not 99.

Neither of these sentences is TIC. Brouwer would say that the last sen-
tence is true [1908], while the first two sentences are not. With the right
understanding of “algorithm”, this fits with the given clauses for TAA.

With an understanding of the word that is too rigid, sentence 3 would come
out as not TAA. The procedure that makes the sentence TIC is the one
described by the instruction “choose additional 14 elements of α”. On a
narrow understanding this is not an algorithm because it involves choices.

On the other hand, we cannot replace “algorithm” with something as broad
as “method”, for that would over-generate sentences that are TAA: the
subject has a method for making sentence 1 TIC, namely deciding to pick
99 as the 17th element.

The right understanding is most clearly explained with a story about two
subjects. One subject is the generator of α and chooses one new element
thereof, whenever he is prompted to do so by the second subject. The
second subject is the one for which sentences 1 and 2 are not TAA while
sentence 3 is. She has an algorithm, in the strict sense of the word, that will
make sentence 3 TIC (by making one of the disjuncts TIC), namely simply
14 times in a row, ask the first subject for a new element of α. Hence,
sentence 3 is TAA for her, while sentences 1 and 2 are not, as she has no
influence on what numbers are chosen.

Having to refer to two different subjects is not in the spirit of Brouwer who
emphasizes the individual. It can be avoided if we imagine a subject who
manages to keep his tasks separate – that is, when he chooses elements of
a choice sequence, he chooses freely within the explicit restrictions he has
imposed on himself without being influenced by the judgments he himself
has previously made about that same choice sequence.
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