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1 Introduction

Priest has demonstrated (2002) that all of the semantical paradoxes share a
common structure and has argued, that the solution to this class of paradoxes
should therefore also be shared. According to him, this is a reason to reject
Kripke’s famous solution to the paradoxes of truth (1975), as it is indeed only a
solution to these paradoxes and not to the paradoxes of denotation. In this paper
I will show that this critique is misplaced. Kripke’s solution can be generalized.
I will just treat two of the paradoxes of denotation, namely Berry’s and Hilbert
and Bernays’, but the approach can be applied to them all.

Berry’s Paradox (Russell 1908) results from the definite description

Berry’s description: the least integer not describable in fewer than twenty
syllables

which is a description of nineteen syllables. So the least integer not describable
in fewer than twenty syllables is describable in only nineteen syllables.

Hilbert and Bernays’ Paradox (originally presented in (Bernays 1939), natu-
ral language formulation in (Priest 2006)) also results from a definite description,
namely this:

Hilbert and Bernays’ description: the sum of 1 and the reference of
Hilbert and Bernays’ description

If we let n be the reference of Hilbert and Bernays’ description, then it also
refers to n+1. As the reference of a definite description is unique, it follows that
n = n+ 1.

I will assume familiarity with Kripke’s paper.
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2 Informal Presentation of the Theory

In Kripke’s theory sentences become true and false in a recursive process, where
a sentence is given a truth value when there is, so to speak, enough information
to do so. For instance a sentence of the form “sentence S is true” is made true
after it has been decided that S is true, false after it has been decided that S
is false, and is left undecided as long as S is. And a disjunction is made true at
such time as one of the disjuncts is, since the information about the (eventual)
truth value of the other disjunct is irrelevant.

To formulate Berry’s description we need two linguistic resources that are not
in the formal language of Kripke’s paper: The ability to form definite descriptions
and a binary predicate expressing that a given term refers to a given object. But
when we equip the formal language with these resources, the principle in Kripke’s
theory can be transfered to these. We let a definite description refer to a given
object, when it is determined that this is the unique object which satisfies the
description. And if it is decided at some point in the iterative process that there
are no objects or more than one object which satisfy the description, it is decided
that the definite description fails to refer. And a sentence of the form “T refers
to O” is made true, if at some point it is decided that the term T indeed does
refer to the object O, and made false, if it is decided that T refers to something
different from O or fails to refer.

In Kripke’s theory the Liar Sentence “this sentence is false” is neither true nor
false, it is “undefined”. The reason is that it could only receive a truth value after
it itself had received a truth value, so at no point in the iterative process does that
happen. When the semantics of definite descriptions and the object-language
reference predicate works as described, something similar is the case for Berry’s
description. Prior to the determination of the reference of Berry’s description,
the predicate “is an integer not describable in fewer than twenty syllables” is false
of a lot of integers, for example 3 and 11 which are the referents of “the square
root of 9” and “the number of letters in ‘phobophobia’” respectively. But it is
not true of any integers, for given any integer for which the predicate is not yet
false, it is not yet ruled out that Berry’s description might refer to that integer.
Ergo the unique object satisfying Berry’s description cannot be identified prior
to this identification itself, so Berry’s description is never assigned a referent and
is hence undefined in the fixed point.

In formalizing Hilbert and Bernays’ Paradox we will also use definite descrip-
tions and the reference relation. But we need one more thing, namely functions.
As is standard, the interpretation of a function symbol will be specified by the in-
terpretation function, and the function symbol can take terms as its arguments.
But the value of a function for given arguments may be undetermined for a while
in the evaluation process, since it may be undetermined what the terms acting
as arguments refer to. We will treat this similarly to the truth functions which
constitute the semantics of the connectives and the quantifiers; when there is suf-
ficient information, the function value will be determined. To take an example,
consider f(t1, t2, t3) where f is a function symbol and t1, t2, and t3 are terms,
and suppose that at some stage in the evaluation process, the reference of t1 and



t2 but not t3 has been determined. Then f(t1, t2, t3) will get a reference at this
stage, iff the reference of t3 does not matter, i.e. if I(f)(r1, r2, d), where I is the
interpretation function, and r1 and r2 are the referents of t1 and t2 respectively,
has the same value for every value of d.

It is easy to see intuitively that also Hilbert and Bernays’ description does
not have a reference in the fixed point; a reference of the description cannot be
determined prior to this determination itself.

As I plan on showing in a forthcoming longer paper, the Kripkean approach
can be used to solve all the known paradoxes of denotation, such as for example
the paradoxes of König and Richard. But here I will focus on the paradoxes of
Berry and Hilbert and Bernays and present a formal language that has just the
resources needed to formalize them.

In Kripke’s theory the evaluations at the various levels consist of a set of true
sentences and a set of false sentences. The extension of the theory here envisaged
means that an evaluation must also contain a reference relation from the set of
terms to the domain (supplemented with something to indicate that it has been
decided that a given term fails to refer). But it is not necessary to complicate
things by making an evaluation a triple. Instead we can take a cue from Frege
(1892) and identify a sentence being true/false with the sentence referring to
Truth/Falsity. That way an evaluation can simply be a reference relation – one
from the union of the set of sentences and the set of terms to the union of the
domain and {>,⊥, ∗}, where >, ⊥, and ∗ are symbols for Truth, Falsity, and
failing to refer respectively.

We will use a standard first-order predicate language with function symbols
supplemented with three things: A unary predicate T for “is true”, a binary
predicate R for “refers to”, and a definite description operator: “�v(φ)” is to be
read as “the v such that φ”.

In order to keep the technical complexity at a minimum, self-reference is
made possible simply by letting the domain include all sentences and terms
of the language, and by making certain assumptions about the denotation of
specific constants when the “paradoxical” terms are formalized. That way, the
complications of Gödel coding and a diagonal lemma can be avoided.

3 Syntax

We now turn to the precise specification of the syntax (this section) and se-
mantics (next section) of a formal language. For each n ∈ IN let there be a
countable set Pn of ordinary n-ary predicates and a countable set Fn of
n-ary function symbols. In addition there are two extra-ordinary predi-
cates, one unary, T , and one binary, R. We also have a set C of constants and
a set of variables, both of cardinality ℵ0.

The set of well-formed formulas (wff’s) and the set of terms are defined
recursively thus:

– Every constant and variable is a term.



– If P is an ordinary n-ary predicate and t1, . . . , tn are terms, then P (t1, . . . , tn)
is a wff.

– If φ and ψ are wff’s, then ¬φ and (φ ∧ ψ) are wff’s.
– If φ is a wff and v a variable, then ∀vφ is a wff’s.
– If t1 and t2 are terms, then T (t1) and R(t1, t2) are wff’s.
– If φ is a wff and v a variable, then �v(φ) is a term.
– If f is an n-ary function symbol and t1, . . . , tn are terms, then f(t1, . . . , tn)

is a term.
– Nothing is a wff or term except by virtue of the above clauses.

The connective → is used as an abbreviation in the usual way.
Variables, constants, predicates (ordinary as well as extra-ordinary), function

symbols, connectives, quantifiers, parenthesis, and commas are called primitive
symbols.

When φ is a wff, v a variable, and c a constant, φ(v/c) is the wff which is
identical with φ with the possible exception that all free occurrences of v are
replaced with c.

A wff is a sentence, and a term is closed, if it does not contain any free
variables. Let S and CT be the set of sentences and the set of closed terms
respectively.

We will make use of a notion of complexity of a formula, but a precise
definition can be dispensed with. Any reasonable definition will do.

4 Semantics

A model is defined as a pair M = (D, I), where D, the domain, and I, the
interpretation function, satisfy the following:

– D is a superset of S ∪ CT ∪ IN such that
• ∗ /∈ D, and

– I is a function defined on
⋃
n∈IN(Pn ∪ Fn) ∪ C such that

• for every P ∈ Pn, I(P ) ⊆ Dn,
• for every f ∈ Fn, I(f) is a function from Dn to D,
• for every c ∈ C, I(c) ∈ D, and
• I [C] = D.

Let a model be fixed for the remainder of this paper. We now define an
evaluation to be a relation E from S ∪ CT to D ∪ {>,⊥, ∗} such that elements
of S are only related to elements of {>,⊥} and elements of CT are only related
to elements of D ∪ {∗}. E is consistent if every sentence and closed term is
related by E to at most one element. An evaluation E ′ extends E if E ⊆ E ′.

The semantics is build up in levels as in Kripke’s theory. We first specify
how to “get from one level to the next”: The evaluation with respect to the
evaluation E , EE , is defined by recursion on the complexity of the formula1:

1 The clauses make reference to EE , but only with respect to less complex formulas
than the one under consideration. By clause 6 and 7, a formula may “gain” its



1. If t is a constant then tEE I(t).
2. If s is of the form P (t1, . . . , tn) where P is an ordinary n-ary predicate and
t1, . . . , tn are closed terms, then
• sEE > if there are d1, . . . , dn ∈ D satisfying t1 EE d1, . . . , tn EE dn such

that (d1, . . . , dn) ∈ I(P ), and
• sEE ⊥ if there are d1, . . . , dn ∈ D satisfying t1 EE d1, . . . , tn EE dn such

that (d1, . . . , dn) /∈ I(P ).
3. If s is of the form ¬φ where φ is a sentence, then
• sEE > if φEE ⊥, and
• sEE ⊥ if φEE >.

4. If s is of the form (φ ∧ ψ) where φ and ψ are sentences, then
• sEE > if φEE > and ψEE >, and
• sEE ⊥ if φEE ⊥ or ψEE ⊥.

5. If s is of the form ∀vφ where v a variable and φ is a wff with at most v free,
then
• sEE > if for all c ∈ C, φ(v/c) EE >, and
• sEE ⊥ if there exists a c ∈ C such that φ(v/c) EE ⊥.

6. If s is of the form T (t) where t is a closed term, then
• sEE > if there is a s′ ∈ S such that tEE s

′ and s′E>,
• sEE ⊥ if there is a s′ ∈ S such that tEE s

′ and s′E⊥, and
• sEE ⊥ if there is a d ∈ D such that tEE d, but no s′ ∈ S such that
tEE s

′.
7. If s is of the form R(t1, t2) where t1 and t2 are closed terms, then
• sEE > if there is a d ∈ D ∪ {∗} and a closed term t′1 such that t1 EE t

′
1,

t′1Ed and t2 EE d,
• sEE ⊥ if there are d1, d2 ∈ D∪{∗}, such that d1 6= d2, and a closed term
t′1 such that t1 EE t

′
1, t′1Ed1 and t2 EE d2, and

• sEE ⊥ if there is a d′ ∈ D ∪ {∗} such that t1 EE d
′, but no closed term

t′1 such that t1 EE t
′
1.

8. If t is of the form �v(φ) where v is a variable and φ is a wff with at most v
free, then
• tEE d if d is an element of D such that for some c ∈ C, I(c) = d and
φ(v/c) EE > and for all other elements d′ of D, every c′ ∈ C, such that
I(c′) = d′, satisfies φ(v/c′) EE ⊥,

• tEE ∗ if there are two different elements d1 and d2 of D such that for
some c1, c2 ∈ C, I(c1) = d1, I(c2) = d2, φ(v/c1) EE > and φ(v/c2) EE >,
and

• tEE ∗ if for all elements d of D, there is a c ∈ C such that I(c) = d and
φ(v/c) EE ⊥.

9. If t is of the form f(t1, . . . , tn) where f is a n-ary function symbol and
t1, . . . , tn are closed terms, then tEE d if d is an element of D for which
every n-tuple (d1, . . . , dn) such that for each i ∈ {1, . . . , n} either ti EE di or
ti is not related to anything by EE , satisfy I(f)(d1, . . . , dn) = d.

reference from a more complex formula, but here it is only the relation E that is
used. In short, the reference of a formula only depends on the previous level and
formulas of lower complexity. Hence, as stated, the definition is simply by recursion
on the complexity of the formula.



Now we iterate the process by defining for all ordinals α the evaluation
with respect to the level α, written Eα, by recursion:

Eα =


∅ if α = 0
EEα−1 if α is a successor ordinal⋃
η<α Eη if α is a limit ordinal 6= 0

The following two lemmas show that the process is monotonic and does not
result in any inconsistency:

Lemma 1. For all ordinals α, β, if α < β then Eα ⊆ Eβ.

Proof. By induction on the complexity of formulas it is seen that for each bullet
in each of the nine clauses above, if the condition in that bullet is satisfied for
some evaluation E it is also satisfied for every extension of E . Ergo if E ⊆ E ′
then EE ⊆ EE′ . As it also holds that E0 = ∅ is a subset of every evaluation, the
lemma follows. ut

Lemma 2. For every ordinal α, Eα is consistent.

Proof. By outer induction on α and inner induction on the complexity of for-
mulas, considering clause 1–9. ut

For every ordinal α and every x ∈ S ∪ CT we define JxKα to be the unique y
such that xEα y, when there is a such. We say that x is determined at level
α, if α is the first level where JxKα is defined.

We now come to the important fixed point theorem:

Theorem 3. There is a unique consistent evaluation E such that for some or-
dinal α it holds that for all ordinals β ≥ α that Eβ = E.

Proof. As there are only countable many sentences and closed terms, the mono-
tonic process must reach a fixed point. Consistency of the fixed point follows
from lemma 2. ut

Letting E and α be as in the theorem, we define the evaluation, E, as E ,
and for all x ∈ S ∪ CT set JxK equal to JxKα when this is defined. The value of
JxK is to be thought of as the reference of x.

5 Expressibility of the Reference Relation

Kripke’s theory is famous for validating the Tarskian T-schema in the sense that,
if (in the notation of this paper) s is a sentence and c is a constant such that
I(c) = s, then JsK = > if and only if JT (c)K = >. In other words: If a sentence is
true, this can be expressed in the object language. In this theory a similar result
holds for reference; if a closed term refers to a given object, then this can be
expressed in the language itself. That is the content of the following theorem.



Theorem 4. Let t be a closed term, d an element of D, and c1 and c2 constants
such that I(c1) = t and I(c2) = d. The following biimplication holds: JtK = d iff
JR(c1, c2)K = >.

Proof. From clause 1 it is seen that for all ordinals α we have c1 Eα t and c2 Eα d.
So it follows from bullet 1 of clause 7 that JtK = d iff tEβ d for some ordinal β
iff R(c1, c2) Eβ+1> iff JR(c1, c2)K = >. ut

6 Solution to Berry’s Paradox

In formalizing the Berry Description we have to get around the fact that in the
formal language, any natural number can be defined with a definite description
of just one symbol, namely a constant. We can do this by defining “length of
a term” not in the obvious way as the number of primitive symbols in the
term, but slightly differently. Reflecting the fact that in natural languages there
are only finitely many primitive symbols, let Φ be a function from the set of
primitive symbols of our formal language to IN which sends only a finite number
of primitive symbols to each n ∈ IN. Then define the length of a term to be the
sum of Φ(x) for every occurrence x of a primitive symbol in the term.

Now we can formalize the Berry Description. Let n, m, and x be variables
and let N and L be unary predicates and ≥ a binary predicate, such that I(N)
is the set of natural numbers, and I(≥) is the relation “larger than or equal to”
on the set of natural numbers. L is to be interpreted as “long”, but we postpone
the precise specification of I(L), until we know just what “long” should mean
to make our formalization “paradoxical”.

We can formalize “x is a definite description of the natural number n” thus:

N(n) ∧R(x, n)

So “The natural number n does not have a short definite description” can be
formalized

N(n) ∧ ∀x(R(x, n)→ L(x)) ,

and “n is the least natural number that does not have a short definite descrip-
tion”

(N(n) ∧ ∀x(R(x, n)→ L(x))) ∧
∀m((N(m) ∧ ∀x(R(x,m)→ L(x)))→ ≥(m,n)) .

Ergo, Berry’s description in a version with length of formal expressions instead
of number of syllables, “the least natural number that does not have a short
definite description”, can be formalized as (B):

�n((N(n) ∧ ∀x(R(x, n)→ L(x))) ∧
∀m((N(m) ∧ ∀x(R(x,m)→ L(x)))→ ≥(m,n))) (B)



Now we can set I(L) to be the set of terms which are longer than the length
of (B).

That (B) fails to refer, i.e that there is no d ∈ D such that J(B)K = d, is
proved as follows: Assume ad absurdum that there is such a d ∈ D. Then it
follows by clause 8 that for a constant c with I(c) = d, we have

J(N(c) ∧ ∀x(R(x, c)→ L(x))) ∧
∀m((N(m) ∧ ∀x(R(x,m)→ L(x)))→ ≥(m, c))K = > .

Using clause 4 twice it can be inferred that

J∀x(R(x, c)→ L(x))K = > ,

and consequently by clause 5 that

JR(c′, c)→ L(c′)K = > ,

where c′ is a constant such that I(c′) = (B). It is already determined at level 1,
that L(c′) is false. This follows from the specification of I(L). Ergo we must have
JR(c′, c)K = ⊥. So at some level bullet 2 or 3 of clause 7 is satisfied. But bullet
3 can not be, for c′ refers to (B) and since the referent of a constant is unique,
not to some object which is not a term. And bullet 2 can not be either, for then
(B) would have to refer to something different from d, but by assumption this is
not the case. This is a contradiction.

7 Solution to Hilbert and Bernays’ Paradox

The Hilbert and Bernays description can be formalized

+(1̄, �v(R(h, v))) , (HB1)

where v is a variable, h is a constant such that I(h) = (HB1), and + is a binary
function symbol such that I(+) is the function that sends every pair of numbers
to their sum and every other pair to 0. 1̄ is a numeral for 1.

J(HB1)K is undefined, as we will proceed to prove. As the sum of 1 and n is
not the same for every natural number n, (HB1) will get a reference, only if

�v(R(h, v)) (HB2)

gets a reference (clause 9). By clause 8 this happens only if there is a constant
c such that

R(h, c) (HB3)

is related to >. We have hE∅(HB1) from which it follows by bullet 1 of clause
7 that this can only be the case if (HB1) gets a reference. We have come full
circle, and can conclude that neither (HB1), (HB2), nor (HB3) become related
to anything.



References

Bernays, P. and Hilbert, D.: Grundlagen der Mathematik (zweiter Band). Verlag von
Julius Springer (1939)
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